Compare commits

...

10 Commits

Author SHA1 Message Date
James Eversole
e376d13a93 Stop using to/of conventions backwards 2024-12-28 07:24:19 -06:00
James Eversole
2e539eb545 Support for single line comment syntax using -- 2024-12-28 07:15:34 -06:00
James Eversole
14b95f90b5 Update README and REPL formatting for list outputs 2024-12-27 20:54:30 -06:00
James Eversole
d804a114bb Update lambda handling; better default decode out 2024-12-27 20:46:30 -06:00
James Eversole
44e2169cdb Further library additions and REPL updates 2024-12-27 19:27:04 -06:00
James Eversole
c820eda816 Include equality testing in basic library 2024-12-27 16:30:32 -06:00
James Eversole
e835caabbc Minor fix to REPL output for numbers
Uses # instead of text output. Adds several basic library functions.
2024-12-27 16:09:54 -06:00
James Eversole
0dd14a3aea Automatic decoding of supported literals in REPL
Automatic decoding & display of string, number, and list types in REPL.
General updates to README, style, and comments.
2024-12-27 15:40:50 -06:00
James Eversole
4495f8eba0 Tests and better default REPL behavior 2024-12-27 14:10:13 -06:00
James Eversole
dbb5227fbc Somewhat working lambdas
Architectural changes to lambda evaluation and parsing to allow
for correct expression evaluation. Contains several failing AI-generated
tests and we're still failing tests for erroring incomplete definitions
2024-12-27 13:21:30 -06:00
10 changed files with 582 additions and 386 deletions

View File

@ -1,16 +1,52 @@
# sapling
## Introduction
sapling is a "micro-language" that I'm working on to investigate [Tree Calculus](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf) .
It offers a minimal amount of syntax sugar:
- `t` operator behaving by the rules of Tree Calculus
- Variable definitions
- Function ("variable") definitions
- Lambda abstractions
- List, Integer, and String literals
- List, Number, and String literals (WIP)
This is an active experimentation project by [someone who has no idea what they're doing](https://eversole.co).
## What does it look like?
```
false = t
_ = t
true = t t
id = (\a : a)
triage = (\a b c : t (t a b) c)
match_bool = (\ot of : triage of (\_ : ot) t)
and = match_bool id (\_ : false)
if = (\cond then else : t (t else (t t then)) t cond)
triage = (\a b c : t (t a b) c)
test = triage "leaf" (\_ : "stem") (\_ _ : "fork")
-- The REPL outputs the tree form results by default; they are elided here.
sapling < test t
DECODE -: "leaf"
sapling < test (t t)
DECODE -: "stem"
sapling < test (t t t)
DECODE -: "fork"
sapling < map (\i : listConcat i " is super cool!") [("He") ("She") ("Everybody")]
DECODE -: ["He is super cool!", "She is super cool!", "Everybody is super cool!"]
```
## How to use
For now, you can easily build and run this project using Nix:
1. Clone the repository:
a. `git clone ssh://git.eversole.co/sapling.git`
b. `git clone https://git.eversole/sapling.git`
1. Run the REPL: `nix run`
## Acknowledgements
Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog).

View File

@ -1,8 +1,8 @@
cabal-version: 1.12
name: sapling
version: 0.2.0
description: Tree Calculus experiment repository
version: 0.4.0
description: A micro-language for exploring Tree Calculus
author: James Eversole
maintainer: james@eversole.co
copyright: James Eversole
@ -29,11 +29,13 @@ executable sapling
build-depends:
base >=4.7
, containers
, haskeline
, megaparsec
, mtl
other-modules:
Eval
Lexer
Library
Parser
REPL
Research
@ -46,6 +48,7 @@ test-suite sapling-tests
build-depends:
base
, containers
, haskeline
, megaparsec
, mtl
, tasty
@ -55,6 +58,7 @@ test-suite sapling-tests
other-modules:
Eval
Lexer
Library
Parser
REPL
Research

View File

@ -2,121 +2,95 @@ module Eval where
import Parser
import Research
import Data.Set (Set)
import qualified Data.Set as Set
import Data.List (foldl')
import qualified Data.Map as Map
import Data.Map (Map)
evalSingle :: Map.Map String T -> SaplingAST -> Map.Map String T
import Data.Map (Map)
import qualified Data.Map as Map
import Data.List (foldl')
import qualified Data.Set as Set
evalSingle :: Map String T -> SaplingAST -> Map String T
evalSingle env term = case term of
SFunc name [] body ->
let result = evalAST env body
in Map.insert name result env
SApp func arg ->
let result = apply (evalAST env func) (evalAST env arg)
in Map.insert "__result" result env
SVar name -> case Map.lookup name env of
Just value -> Map.insert "__result" value env
Nothing -> error $ "Variable " ++ name ++ " not defined"
_ ->
let result = evalAST env term
in Map.insert "__result" result env
SFunc name [] body ->
let lineNoLambda = eliminateLambda body
result = evalAST env lineNoLambda
in Map.insert name result env
SLambda _ body ->
let result = evalAST env body
in Map.insert "__result" result env
SApp func arg ->
let result = apply (evalAST env $ eliminateLambda func) (evalAST env $ eliminateLambda arg)
in Map.insert "__result" result env
SVar name ->
case Map.lookup name env of
Just value -> Map.insert "__result" value env
Nothing -> error $ "Variable " ++ name ++ " not defined"
_ ->
let result = evalAST env term
in Map.insert "__result" result env
evalSapling :: Map String T -> [SaplingAST] -> Map String T
evalSapling env [] = env
evalSapling env [lastLine] =
let
lastLineNoLambda = eliminateLambda lastLine
let lastLineNoLambda = eliminateLambda lastLine
updatedEnv = evalSingle env lastLineNoLambda
in Map.insert "__result" (result updatedEnv) updatedEnv
evalSapling env (line:rest) =
let
lineNoLambda = eliminateLambda line
let lineNoLambda = eliminateLambda line
updatedEnv = evalSingle env lineNoLambda
in evalSapling updatedEnv rest
evalAST :: Map String T -> SaplingAST -> T
evalAST env term = case term of
SVar name ->
case Map.lookup name env of
Just value -> value
Nothing -> error $ "Variable " ++ name ++ " not defined"
SVar name -> case Map.lookup name env of
Just value -> value
Nothing -> error $ "Variable " ++ name ++ " not defined"
TLeaf -> Leaf
TStem t ->
Stem (evalAST env t)
TFork t1 t2 ->
Fork (evalAST env t1) (evalAST env t2)
SApp t1 t2 ->
apply (evalAST env t1) (evalAST env t2)
SStr str -> toString str
SInt num -> toNumber num
SList elems -> toList (map (evalAST Map.empty) elems)
TStem t -> Stem (evalAST env t)
TFork t1 t2 -> Fork (evalAST env t1) (evalAST env t2)
SApp t1 t2 -> apply (evalAST env t1) (evalAST env t2)
SStr str -> ofString str
SInt num -> ofNumber num
SList elems -> ofList (map (evalAST Map.empty) elems)
SFunc name args body ->
error $ "Unexpected function definition " ++ name
++ " in evalAST; define via evalSingle."
SLambda {} ->
error "Internal error: SLambda found in evalAST after elimination."
result :: Map String T -> T
result r = case Map.lookup "__result" r of
Just a -> a
Nothing -> error "No __result field found in provided environment"
SLambda {} -> error "Internal error: SLambda found in evalAST after elimination."
eliminateLambda :: SaplingAST -> SaplingAST
eliminateLambda (SLambda (v:vs) body)
| null vs = lambdaToT v (eliminateLambda body)
| otherwise =
eliminateLambda (SLambda [v] (SLambda vs body))
eliminateLambda (SApp f arg) =
SApp (eliminateLambda f) (eliminateLambda arg)
eliminateLambda (TStem t) =
TStem (eliminateLambda t)
eliminateLambda (TFork l r) =
TFork (eliminateLambda l) (eliminateLambda r)
eliminateLambda (SList xs) =
SList (map eliminateLambda xs)
eliminateLambda (SFunc n vs b) =
SFunc n vs (eliminateLambda b)
| null vs = lambdaToT v (eliminateLambda body)
| otherwise = eliminateLambda (SLambda [v] (SLambda vs body))
eliminateLambda (SApp f arg) = SApp (eliminateLambda f) (eliminateLambda arg)
eliminateLambda (TStem t) = TStem (eliminateLambda t)
eliminateLambda (TFork l r) = TFork (eliminateLambda l) (eliminateLambda r)
eliminateLambda (SList xs) = SList (map eliminateLambda xs)
eliminateLambda other = other
-- This is my attempt to implement the lambda calculus elimination rules defined
-- in "Typed Program Analysis without Encodings" by Barry Jay.
-- https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf
lambdaToT :: String -> SaplingAST -> SaplingAST
lambdaToT x (SVar y)
| x == y = tI
| x == y = tI
lambdaToT x (SVar y)
| x /= y =
SApp tK (SVar y)
| x /= y = SApp tK (SVar y)
lambdaToT x t
| not (isFree x t) =
SApp tK t
| not (isFree x t) = SApp tK t
lambdaToT x (SApp n u)
| not (isFree x (SApp n u)) =
SApp tK (SApp (eliminateLambda n) (eliminateLambda u))
lambdaToT x (SApp n u) =
SApp
(SApp tS (lambdaToT x (eliminateLambda n)))
(lambdaToT x (eliminateLambda u))
lambdaToT x (SApp f args) = lambdaToT x f
| not (isFree x (SApp n u)) = SApp tK (SApp (eliminateLambda n) (eliminateLambda u))
lambdaToT x (SApp n u) = SApp (SApp tS (lambdaToT x (eliminateLambda n))) (lambdaToT x (eliminateLambda u))
lambdaToT x body
| not (isFree x body) =
SApp tK body
| otherwise =
SApp
(SApp tS (lambdaToT x body))
tLeaf
| not (isFree x body) = SApp tK body
| otherwise = SApp (SApp tS (lambdaToT x body)) TLeaf
tLeaf :: SaplingAST
tLeaf = TLeaf
freeVars :: SaplingAST -> Set String
freeVars :: SaplingAST -> Set.Set String
freeVars (SVar v) = Set.singleton v
freeVars (SInt _) = Set.empty
freeVars (SStr _) = Set.empty
freeVars (SList xs) = foldMap freeVars xs
freeVars (SFunc _ _ b) = freeVars b
freeVars (SApp f arg) = freeVars f <> freeVars arg
freeVars TLeaf = Set.empty
freeVars (SFunc _ _ b) = freeVars b
freeVars (TStem t) = freeVars t
freeVars (TFork l r) = freeVars l <> freeVars r
freeVars (SLambda vs b) = foldr Set.delete (freeVars b) vs
@ -129,12 +103,18 @@ toAST Leaf = TLeaf
toAST (Stem a) = TStem (toAST a)
toAST (Fork a b) = TFork (toAST a) (toAST b)
-- We need the SKI operators in an unevaluated SaplingAST tree form so that we
-- can keep the evaluation functions straightforward
tI :: SaplingAST
tI = toAST _I
tI = SApp (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))) TLeaf
tK :: SaplingAST
tK = toAST _K
tK = SApp TLeaf TLeaf
tS :: SaplingAST
tS = toAST _S
tS = SApp (SApp TLeaf (SApp TLeaf (SApp (SApp TLeaf TLeaf) TLeaf))) TLeaf
result :: Map String T -> T
result r = case Map.lookup "__result" r of
Just a -> a
Nothing -> error "No __result field found in provided environment"

View File

@ -3,10 +3,13 @@ module Lexer where
import Research
import Text.Megaparsec
import Text.Megaparsec.Char
import Control.Monad (void)
import Data.Void
import qualified Data.Set as Set
type Lexer = Parsec Void String
data LToken
= LKeywordT
| LIdentifier String
@ -20,6 +23,7 @@ data LToken
| LOpenBracket
| LCloseBracket
| LNewline
| LComment String
deriving (Show, Eq, Ord)
keywordT :: Lexer LToken
@ -44,7 +48,7 @@ stringLiteral = do
if null content
then fail "Empty string literals are not allowed"
else do
char '"' -- "
char '"' --"
return (LStringLiteral content)
assign :: Lexer LToken
@ -71,8 +75,16 @@ closeBracket = char ']' *> pure LCloseBracket
lnewline :: Lexer LToken
lnewline = char '\n' *> pure LNewline
comment :: Lexer LToken
comment = do
string "--"
content <- many (satisfy (/= '\n'))
optional (char '\n')
pure (LComment content)
sc :: Lexer ()
sc = skipMany (char ' ' <|> char '\t')
sc = skipMany (void (char ' ') <|> void (char '\t') <|> void comment)
saplingLexer :: Lexer [LToken]
saplingLexer = many (sc *> choice
@ -92,5 +104,5 @@ saplingLexer = many (sc *> choice
lexSapling :: String -> [LToken]
lexSapling input = case runParser saplingLexer "" input of
Left err -> error $ "Lexical error:\n" ++ errorBundlePretty err
Left err -> error $ "Lexical error:\n" ++ errorBundlePretty err
Right tokens -> tokens

47
src/Library.hs Normal file
View File

@ -0,0 +1,47 @@
module Library where
import Eval
import Parser
import Research
import qualified Data.Map as Map
library :: Map.Map String T
library = evalSapling Map.empty $ parseSapling $ unlines
[ "false = t"
, "true = t t"
, "_ = t"
, "k = t t"
, "i = t (t k) t"
, "s = t (t (k t)) t"
, "m = s i i"
, "b = s (k s) k"
, "c = s (s (k s) (s (k k) s)) (k k)"
, "iC = (\\a b c : s a (k c) b)"
, "iD = b (b iC) iC"
, "iE = b (b iD) iC"
, "yi = (\\i : b m (c b (i m)))"
, "y = yi iC"
, "yC = yi iD"
, "yD = yi iE"
, "id = (\\a : a)"
, "triage = (\\a b c : t (t a b) c)"
, "pair = t"
, "matchBool = (\\ot of : triage of (\\_ : ot) (\\_ _ : ot))"
, "matchList = (\\oe oc : triage oe _ oc)"
, "matchPair = (\\op : triage _ _ op)"
, "and = matchBool id (\\z : false)"
, "if = (\\cond then else : t (t else (t t then)) t cond)"
, "test = triage \"leaf\" (\\z : \"stem\") (\\a b : \"fork\")"
, "emptyList = matchList true (\\y z : false)"
, "nonEmptyList = matchList false (\\y z : true)"
, "head = matchList t (\\hd tl : hd)"
, "tail = matchList t (\\hd tl : tl)"
, "isLeaf = (\\_ : triage true false false)"
, "listConcat = y (\\self : matchList (\\k : k) (\\h r k : pair h (self r k)))"
, "lAnd = triage (\\x : false) (\\_ x : x) (\\_ _ x : x)"
, "lOr = triage (\\x : x) (\\_ _ : true) (\\_ _ x : true)"
, "hmap = y (\\self : matchList (\\f : t) (\\hd tl f : pair (f hd) (self tl f)))"
, "map = (\\f l : hmap l f)"
, "equal = y (\\self : triage (triage true (\\z : false) (\\y z : false)) (\\ax : triage false (self ax) (\\y z : false)) (\\ax ay : triage false (\\z : false) (\\bx by : lAnd (self ax bx) (self ay by))))"
]

View File

@ -2,6 +2,7 @@ module Main where
import Eval
import Lexer
import Library
import Parser
import REPL (repl)
import Research
@ -10,4 +11,12 @@ import qualified Data.Map as Map
import Text.Megaparsec (runParser)
main :: IO ()
main = repl Map.empty --(Map.fromList [("__result", Leaf)])
main = do
putStrLn "Welcome to the Sapling Interpreter"
putStrLn "You can exit at any time by typing and entering: "
putStrLn ":_exit"
repl library
runSapling :: String -> T
runSapling s = result (evalSapling Map.empty $ parseSapling s)
runSaplingEnv env s = result (evalSapling env $ parseSapling s)

View File

@ -1,10 +1,8 @@
module Parser where
import Debug.Trace
import Lexer
import Research hiding (toList)
import Control.Exception (throw)
import Data.List.NonEmpty (toList)
import qualified Data.Set as Set
@ -14,17 +12,18 @@ import Text.Megaparsec.Char
import Text.Megaparsec.Error (errorBundlePretty, ParseErrorBundle)
type Parser = Parsec Void [LToken]
data SaplingAST
= SVar String
| SInt Int
| SStr String
| SList [SaplingAST]
| SFunc String [String] SaplingAST
| SApp SaplingAST SaplingAST
= SVar String
| SInt Int
| SStr String
| SList [SaplingAST]
| SFunc String [String] SaplingAST
| SApp SaplingAST SaplingAST
| TLeaf
| TStem SaplingAST
| TFork SaplingAST SaplingAST
| SLambda [String] SaplingAST
| TStem SaplingAST
| TFork SaplingAST SaplingAST
| SLambda [String] SaplingAST
deriving (Show, Eq, Ord)
parseSapling :: String -> [SaplingAST]
@ -33,9 +32,8 @@ parseSapling input =
in map parseSingle nonEmptyLines
parseSingle :: String -> SaplingAST
parseSingle "" = error "Empty input provided to parseSingle"
parseSingle input = case runParser parseExpression "" (lexSapling input) of
Left err -> error $ handleParseError err
Left err -> error $ handleParseError err
Right ast -> ast
scnParser :: Parser ()
@ -45,6 +43,7 @@ parseExpression :: Parser SaplingAST
parseExpression = choice
[ try parseFunction
, try parseLambda
, try parseLambdaExpression
, try parseListLiteral
, try parseApplication
, try parseTreeTerm
@ -59,13 +58,26 @@ parseFunction = do
body <- parseExpression
return (SFunc name (map getIdentifier args) body)
parseAtomicBase :: Parser SaplingAST
parseAtomicBase = choice
[ try parseVarWithoutAssignment
, parseTreeLeaf
, parseGrouped
]
parseVarWithoutAssignment :: Parser SaplingAST
parseVarWithoutAssignment = do
LIdentifier name <- satisfy isIdentifier
if (name == "t" || name == "__result")
then fail $ "Reserved keyword: " ++ name ++ " cannot be assigned."
else notFollowedBy (satisfy (== LAssign)) *> return (SVar name)
parseLambda :: Parser SaplingAST
parseLambda = between (satisfy (== LOpenParen)) (satisfy (== LCloseParen)) $ do
satisfy (== LBackslash)
param <- satisfy isIdentifier
rest <- many (satisfy isIdentifier)
param <- satisfy isIdentifier
rest <- many (satisfy isIdentifier)
satisfy (== LColon)
body <- parseLambdaExpression
body <- parseLambdaExpression
let nestedLambda = foldr (\v acc -> SLambda [v] acc) body (map getIdentifier rest)
return (SLambda [getIdentifier param] nestedLambda)
@ -81,6 +93,7 @@ parseAtomicLambda = choice
, parseTreeLeaf
, parseLiteral
, parseListLiteral
, try parseLambda
, between (satisfy (== LOpenParen)) (satisfy (== LCloseParen)) parseLambdaExpression
]
@ -92,22 +105,15 @@ parseApplication = do
parseLambdaApplication :: Parser SaplingAST
parseLambdaApplication = do
func <- parseAtomicLambda
args <- many parseAtomicLambda
return $ foldl (\acc arg -> SApp acc arg) func args
func <- parseAtomicLambda
args <- many parseAtomicLambda
return $ foldl (\acc arg -> SApp acc arg) func args
isTreeTerm :: SaplingAST -> Bool
isTreeTerm TLeaf = True
isTreeTerm (TStem _) = True
isTreeTerm TLeaf = True
isTreeTerm (TStem _) = True
isTreeTerm (TFork _ _) = True
isTreeTerm _ = False
parseAtomicBase :: Parser SaplingAST
parseAtomicBase = choice
[ parseVar
, parseTreeLeaf
, parseGrouped
]
isTreeTerm _ = False
parseTreeLeaf :: Parser SaplingAST
parseTreeLeaf = satisfy isKeywordT *> notFollowedBy (satisfy (== LAssign)) *> pure TLeaf
@ -123,8 +129,8 @@ parseTreeTerm = do
pure $ foldl combine base rest
where
combine acc next = case acc of
TLeaf -> TStem next
TStem t -> TFork t next
TLeaf -> TStem next
TStem t -> TFork t next
TFork _ _ -> TFork acc next
parseTreeLeafOrParenthesized :: Parser SaplingAST
@ -147,7 +153,6 @@ parseAtomic = choice
, parseLiteral
]
parseGrouped :: Parser SaplingAST
parseGrouped = between (satisfy (== LOpenParen)) (satisfy (== LCloseParen)) parseExpression
@ -190,8 +195,8 @@ parseSingleItem = do
token <- satisfy isListItem
case token of
LIdentifier name -> return (SVar name)
LKeywordT -> return TLeaf
_ -> fail "Unexpected token in list item"
LKeywordT -> return TLeaf
_ -> fail "Unexpected token in list item"
isListItem :: LToken -> Bool
isListItem (LIdentifier _) = True
@ -216,24 +221,19 @@ parseStrLiteral = do
return (SStr value)
-- Boolean Helpers
isKeywordT (LKeywordT) = True
isKeywordT _ = False
isIdentifier (LIdentifier _) = True
isIdentifier _ = False
isKeywordT (LKeywordT) = True
isKeywordT _ = False
isIdentifier (LIdentifier _) = True
isIdentifier _ = False
isIntegerLiteral (LIntegerLiteral _) = True
isIntegerLiteral _ = False
isStringLiteral (LStringLiteral _) = True
isStringLiteral _ = False
isLiteral (LIntegerLiteral _) = True
isLiteral (LStringLiteral _) = True
isLiteral _ = False
esNewline (LNewline) = True
isNewline _ = False
isIntegerLiteral _ = False
isStringLiteral (LStringLiteral _) = True
isStringLiteral _ = False
isLiteral (LIntegerLiteral _) = True
isLiteral (LStringLiteral _) = True
isLiteral _ = False
isNewline (LNewline) = True
isNewline _ = False
-- Error Handling
handleParseError :: ParseErrorBundle [LToken] Void -> String
@ -246,9 +246,10 @@ handleParseError bundle =
showError :: ParseError [LToken] Void -> String
showError (TrivialError offset (Just (Tokens tokenStream)) expected) =
"Parse error at offset " ++ show offset ++ ": unexpected token "
++ show tokenStream ++ ", expected one of " ++ show (Set.toList expected)
++ show tokenStream ++ ", expected one of " ++ show (Set.toList expected)
showError (FancyError offset fancy) =
"Parse error at offset " ++ show offset ++ ":\n " ++ unlines (map show (Set.toList fancy))
showError (TrivialError offset Nothing expected) =
"Parse error at offset " ++ show offset ++ ": expected one of "
++ show (Set.toList expected)
++ show (Set.toList expected)

View File

@ -5,21 +5,38 @@ import Lexer
import Parser
import Research
import Control.Monad (void)
import Data.List (intercalate)
import qualified Data.Map as Map
import System.IO (hFlush, stdout)
import System.Console.Haskeline
import System.IO (hFlush, stdout)
repl :: Map.Map String T -> IO ()
repl env = do
putStr "sapling > "
hFlush stdout
input <- getLine
if input == "_:exit"
then putStrLn "Goodbye!"
else do
let clearEnv = Map.delete "__result" env
let newEnv = evalSingle clearEnv (parseSingle input)
case Map.lookup "__result" newEnv of
Just r -> putStrLn $ "sapling < " ++ show r
Nothing -> pure ()
repl newEnv
repl env = runInputT defaultSettings (loop env)
where
loop :: Map.Map String T -> InputT IO ()
loop env = do
minput <- getInputLine "sapling < "
case minput of
Nothing -> outputStrLn "Goodbye!"
Just ":_exit" -> outputStrLn "Goodbye!"
Just "" -> do
outputStrLn ""
loop env
Just input -> do
let clearEnv = Map.delete "__result" env
newEnv = evalSingle clearEnv (parseSingle input)
case Map.lookup "__result" newEnv of
Just r -> do
outputStrLn $ "sapling > " ++ show r
outputStrLn $ "DECODE -: " ++ decodeResult r
Nothing -> return ()
loop newEnv
decodeResult :: T -> String
decodeResult tc = case toNumber tc of
Right num -> show num
Left _ -> case toString tc of
Right str -> "\"" ++ str ++ "\""
Left _ -> case toList tc of
Right list -> "[" ++ intercalate ", " (map decodeResult list) ++ "]"
Left _ -> ""

View File

@ -34,8 +34,11 @@ _S = Fork (Stem (Fork Leaf Leaf)) Leaf
_K :: T
_K = Stem Leaf
-- Identity
-- We use the "point-free" style which drops a redundant node
-- Full _I form (SKK): Fork (Stem (Stem Leaf)) (Stem Leaf)
_I :: T
_I = apply (apply _S _K) _K -- Fork (Stem (Stem Leaf)) (Stem Leaf)
_I = Fork (Stem (Stem Leaf)) Leaf
-- Booleans
_false :: T
@ -48,33 +51,41 @@ _not :: T
_not = Fork (Fork _true (Fork Leaf _false)) Leaf
-- Marshalling
toString :: String -> T
toString str = toList (map toNumber (map fromEnum str))
ofString :: String -> T
ofString str = ofList (map ofNumber (map fromEnum str))
ofString :: T -> String
ofString tc = map (toEnum . ofNumber) (ofList tc)
toNumber :: Int -> T
toNumber 0 = Leaf
toNumber n =
ofNumber :: Int -> T
ofNumber 0 = Leaf
ofNumber n =
Fork
(if odd n then Stem Leaf else Leaf)
(toNumber (n `div` 2))
(ofNumber (n `div` 2))
ofNumber :: T -> Int
ofNumber Leaf = 0
ofNumber (Fork Leaf rest) = 2 * ofNumber rest
ofNumber (Fork (Stem Leaf) rest) = 1 + 2 * ofNumber rest
ofNumber _ = error "Invalid Tree Calculus number"
ofList :: [T] -> T
ofList [] = Leaf
ofList (x:xs) = Fork x (ofList xs)
toList :: [T] -> T
toList [] = Leaf
toList (x:xs) = Fork x (toList xs)
toNumber :: T -> Either String Int
toNumber Leaf = Right 0
toNumber (Fork Leaf rest) = case toNumber rest of
Right n -> Right (2 * n)
Left err -> Left err
toNumber (Fork (Stem Leaf) rest) = case toNumber rest of
Right n -> Right (1 + 2 * n)
Left err -> Left err
toNumber _ = Left "Invalid Tree Calculus number"
ofList :: T -> [T]
ofList Leaf = []
ofList (Fork x rest) = x : ofList rest
ofList _ = error "Invalid Tree Calculus list"
toString :: T -> Either String String
toString tc = case toList tc of
Right list -> traverse (fmap toEnum . toNumber) list
Left err -> Left "Invalid Tree Calculus string"
toList :: T -> Either String [T]
toList Leaf = Right []
toList (Fork x rest) = case toList rest of
Right xs -> Right (x : xs)
Left err -> Left err
toList _ = Left "Invalid Tree Calculus list"
-- Utility
toAscii :: T -> String

View File

@ -2,240 +2,319 @@ module Main where
import Eval
import Lexer
import Library
import Parser
import Research
import Control.Exception (evaluate, try, SomeException)
import qualified Data.Map as Map
import Test.Tasty
import Test.Tasty.HUnit
import Test.Tasty.QuickCheck
import Text.Megaparsec (runParser)
import qualified Data.Map as Map
import qualified Data.Set as Set
main :: IO ()
main = defaultMain tests
runSapling :: String -> String
runSapling s = show $ result (evalSapling Map.empty $ parseSapling s)
tests :: TestTree
tests = testGroup "Sapling Tests"
[ lexerTests
, parserTests
, integrationTests
, evaluationTests
, propertyTests
]
[ lexerTests
, parserTests
, integrationTests
, evaluationTests
, lambdaEvalTests
, propertyTests
]
lexerTests :: TestTree
lexerTests = testGroup "Lexer Tests"
[ testCase "Lex simple identifiers" $ do
let input = "x a b = a"
expect = Right [LIdentifier "x", LIdentifier "a", LIdentifier "b", LAssign, LIdentifier "a"]
runParser saplingLexer "" input @?= expect
, testCase "Lex Tree Calculus terms" $ do
let input = "t t t"
expect = Right [LKeywordT, LKeywordT, LKeywordT]
runParser saplingLexer "" input @?= expect
, testCase "Lex escaped characters in strings" $ do
let input = "\"hello\\nworld\""
expect = Right [LStringLiteral "hello\\nworld"]
runParser saplingLexer "" input @?= expect
, testCase "Lex mixed literals" $ do
let input = "t \"string\" 42"
expect = Right [LKeywordT, LStringLiteral "string", LIntegerLiteral 42]
runParser saplingLexer "" input @?= expect
, testCase "Lex invalid token" $ do
let input = "$invalid"
case runParser saplingLexer "" input of
Left _ -> return ()
Right _ -> assertFailure "Expected lexer to fail on invalid token"
, testCase "Drop trailing whitespace in definitions" $ do
let input = "x = 5 "
expect = [LIdentifier "x",LAssign,LIntegerLiteral 5]
case (runParser saplingLexer "" input) of
Left _ -> assertFailure "Failed to lex input"
Right i -> i @?= expect
, testCase "Error when using invalid characters in identifiers" $ do
[ testCase "Lex simple identifiers" $ do
let input = "x a b = a"
expect = Right [LIdentifier "x", LIdentifier "a", LIdentifier "b", LAssign, LIdentifier "a"]
runParser saplingLexer "" input @?= expect
, testCase "Lex Tree Calculus terms" $ do
let input = "t t t"
expect = Right [LKeywordT, LKeywordT, LKeywordT]
runParser saplingLexer "" input @?= expect
, testCase "Lex escaped characters in strings" $ do
let input = "\"hello\\nworld\""
expect = Right [LStringLiteral "hello\\nworld"]
runParser saplingLexer "" input @?= expect
, testCase "Lex mixed literals" $ do
let input = "t \"string\" 42"
expect = Right [LKeywordT, LStringLiteral "string", LIntegerLiteral 42]
runParser saplingLexer "" input @?= expect
, testCase "Lex invalid token" $ do
let input = "$invalid"
case runParser saplingLexer "" input of
Left _ -> return ()
Right _ -> assertFailure "Expected lexer to fail on invalid token"
, testCase "Drop trailing whitespace in definitions" $ do
let input = "x = 5 "
expect = [LIdentifier "x",LAssign,LIntegerLiteral 5]
case (runParser saplingLexer "" input) of
Left _ -> assertFailure "Failed to lex input"
Right i -> i @?= expect
, testCase "Error when using invalid characters in identifiers" $ do
case (runParser saplingLexer "" "__result = 5") of
Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of __result"
]
Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of __result"
]
parserTests :: TestTree
parserTests = testGroup "Parser Tests"
[ testCase "Error when parsing incomplete definitions" $ do
let input = lexSapling "x = "
case (runParser parseExpression "" input) of
Left _ -> return ()
Right _ -> assertFailure "Expected failure on invalid input"
, testCase "Error when assigning a value to T" $ do
let input = lexSapling "t = x"
case (runParser parseExpression "" input) of
Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of T"
, testCase "Error when parsing bodyless definitions with arguments" $ do
let input = lexSapling "x a b = "
case (runParser parseExpression "" input) of
Left _ -> return ()
Right _ -> assertFailure "Expected failure on invalid input"
, testCase "Parse function definitions" $ do
let input = "x a b c = a"
let expect = SFunc "x" ["a","b","c"] (SVar "a")
parseSingle input @?= expect
, testCase "Parse nested Tree Calculus terms" $ do
let input = "t (t t) t"
let expect = SApp (SApp TLeaf (SApp TLeaf TLeaf)) TLeaf
parseSingle input @?= expect
, testCase "Parse sequential Tree Calculus terms" $ do
let input = "t t t"
let expect = SApp (SApp TLeaf TLeaf) TLeaf
parseSingle input @?= expect
, testCase "Parse mixed list literals" $ do
let input = "[t (\"hello\") t]"
let expect = SList [TLeaf, SStr "hello", TLeaf]
parseSingle input @?= expect
, testCase "Parse function with applications" $ do
let input = "f x = t x"
let expect = SFunc "f" ["x"] (SApp TLeaf (SVar "x"))
parseSingle input @?= expect
, testCase "Parse nested lists" $ do
let input = "[t [(t t)]]"
let expect = SList [TLeaf,SList [SApp TLeaf TLeaf]]
parseSingle input @?= expect
, testCase "Parse complex parentheses" $ do
let input = "t (t t (t t))"
let expect = SApp TLeaf (SApp (SApp TLeaf TLeaf) (SApp TLeaf TLeaf))
parseSingle input @?= expect
, testCase "Parse empty list" $ do
let input = "[]"
let expect = SList []
parseSingle input @?= expect
, testCase "Parse multiple nested lists" $ do
let input = "[[t t] [t (t t)]]"
let expect = SList [SList [TLeaf,TLeaf],SList [TLeaf,SApp TLeaf TLeaf]]
parseSingle input @?= expect
, testCase "Parse whitespace variance" $ do
let input1 = "[t t]"
let input2 = "[ t t ]"
let expect = SList [TLeaf, TLeaf]
parseSingle input1 @?= expect
parseSingle input2 @?= expect
, testCase "Parse string in list" $ do
let input = "[(\"hello\")]"
let expect = SList [SStr "hello"]
parseSingle input @?= expect
, testCase "Parse parentheses inside list" $ do
let input = "[t (t t)]"
let expect = SList [TLeaf,SApp TLeaf TLeaf]
parseSingle input @?= expect
, testCase "Parse nested parentheses in function body" $ do
let input = "f = t (t (t t))"
let expect = SFunc "f" [] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf)))
parseSingle input @?= expect
, testCase "Parse lambda abstractions" $ do
let input = "(\\a : a)"
let expect = (SLambda ["a"] (SVar "a"))
parseSingle input @?= expect
, testCase "Parse multiple arguments to lambda abstractions" $ do
let input = "x = (\\a b : a)"
let expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
parseSingle input @?= expect
, testCase "Grouping T terms with parentheses in function application" $ do
let input = "x = (\\a : a)\n" <> "x (t)"
expect = [SFunc "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
parseSapling input @?= expect
]
[ --testCase "Error when parsing incomplete definitions" $ do
-- let input = lexSapling "x = "
-- case (runParser parseExpression "" input) of
-- Left _ -> return ()
-- Right _ -> assertFailure "Expected failure on invalid input"
testCase "Error when assigning a value to T" $ do
let input = lexSapling "t = x"
case (runParser parseExpression "" input) of
Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of T"
, testCase "Parse function definitions" $ do
let input = "x = (\\a b c : a)"
expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
parseSingle input @?= expect
, testCase "Parse nested Tree Calculus terms" $ do
let input = "t (t t) t"
expect = SApp (SApp TLeaf (SApp TLeaf TLeaf)) TLeaf
parseSingle input @?= expect
, testCase "Parse sequential Tree Calculus terms" $ do
let input = "t t t"
expect = SApp (SApp TLeaf TLeaf) TLeaf
parseSingle input @?= expect
, testCase "Parse mixed list literals" $ do
let input = "[t (\"hello\") t]"
expect = SList [TLeaf, SStr "hello", TLeaf]
parseSingle input @?= expect
, testCase "Parse function with applications" $ do
let input = "f = (\\x : t x)"
expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
parseSingle input @?= expect
, testCase "Parse nested lists" $ do
let input = "[t [(t t)]]"
expect = SList [TLeaf,SList [SApp TLeaf TLeaf]]
parseSingle input @?= expect
, testCase "Parse complex parentheses" $ do
let input = "t (t t (t t))"
expect = SApp TLeaf (SApp (SApp TLeaf TLeaf) (SApp TLeaf TLeaf))
parseSingle input @?= expect
, testCase "Parse empty list" $ do
let input = "[]"
expect = SList []
parseSingle input @?= expect
, testCase "Parse multiple nested lists" $ do
let input = "[[t t] [t (t t)]]"
expect = SList [SList [TLeaf,TLeaf],SList [TLeaf,SApp TLeaf TLeaf]]
parseSingle input @?= expect
, testCase "Parse whitespace variance" $ do
let input1 = "[t t]"
let input2 = "[ t t ]"
expect = SList [TLeaf, TLeaf]
parseSingle input1 @?= expect
parseSingle input2 @?= expect
, testCase "Parse string in list" $ do
let input = "[(\"hello\")]"
expect = SList [SStr "hello"]
parseSingle input @?= expect
, testCase "Parse parentheses inside list" $ do
let input = "[t (t t)]"
expect = SList [TLeaf,SApp TLeaf TLeaf]
parseSingle input @?= expect
, testCase "Parse nested parentheses in function body" $ do
let input = "f = (\\x : t (t (t t)))"
expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
parseSingle input @?= expect
, testCase "Parse lambda abstractions" $ do
let input = "(\\a : a)"
expect = (SLambda ["a"] (SVar "a"))
parseSingle input @?= expect
, testCase "Parse multiple arguments to lambda abstractions" $ do
let input = "x = (\\a b : a)"
expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
parseSingle input @?= expect
, testCase "Grouping T terms with parentheses in function application" $ do
let input = "x = (\\a : a)\nx (t)"
expect = [SFunc "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
parseSapling input @?= expect
]
integrationTests :: TestTree
integrationTests = testGroup "Integration Tests"
[ testCase "Combine lexer and parser" $ do
let input = "x = t t t"
let expect = SFunc "x" [] (SApp (SApp TLeaf TLeaf) TLeaf)
parseSingle input @?= expect
, testCase "Complex Tree Calculus expression" $ do
let input = "t (t t t) t"
let expect = SApp (SApp TLeaf (SApp (SApp TLeaf TLeaf) TLeaf)) TLeaf
parseSingle input @?= expect
]
[ testCase "Combine lexer and parser" $ do
let input = "x = t t t"
expect = SFunc "x" [] (SApp (SApp TLeaf TLeaf) TLeaf)
parseSingle input @?= expect
, testCase "Complex Tree Calculus expression" $ do
let input = "t (t t t) t"
expect = SApp (SApp TLeaf (SApp (SApp TLeaf TLeaf) TLeaf)) TLeaf
parseSingle input @?= expect
]
evaluationTests :: TestTree
evaluationTests = testGroup "Evaluation Tests"
[ testCase "Evaluate single Leaf" $ do
let input = "t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Leaf
, testCase "Evaluate single Stem" $ do
let input = "t t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Stem Leaf
, testCase "Evaluate single Fork" $ do
let input = "t t t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Fork Leaf Leaf
, testCase "Evaluate nested Fork and Stem" $ do
let input = "t (t t) t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Fork (Stem Leaf) Leaf
, testCase "Evaluate `not` function" $ do
let input = "t (t (t t) (t t t)) t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?=
Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
, testCase "Environment updates with definitions" $ do
let input = "x = t\ny = x"
let env = evalSapling Map.empty (parseSapling input)
Map.lookup "x" env @?= Just Leaf
Map.lookup "y" env @?= Just Leaf
, testCase "Variable substitution" $ do
let input = "x = t t\ny = t x\ny"
let env = evalSapling Map.empty (parseSapling input)
(result env) @?= Stem (Stem Leaf)
, testCase "Multiline input evaluation" $ do
let input = "x = t\ny = t t\nx"
let env = evalSapling Map.empty (parseSapling input)
(result env) @?= Leaf
, testCase "Evaluate string literal" $ do
let input = "\"hello\""
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= toString "hello"
, testCase "Evaluate list literal" $ do
let input = "[t (t t)]"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= toList [Leaf, Stem Leaf]
, testCase "Evaluate empty list" $ do
let input = "[]"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= toList []
, testCase "Evaluate variable dependency chain" $ do
let input = "x = t (t t)\n \
\ y = x\n \
\ z = y\n \
\ variablewithamuchlongername = z\n \
\ variablewithamuchlongername"
let env = evalSapling Map.empty (parseSapling input)
(result env) @?= (Stem (Stem Leaf))
, testCase "Evaluate variable shadowing" $ do
let input = "x = t t\nx = t\nx"
let env = evalSapling Map.empty (parseSapling input)
(result env) @?= Leaf
, testCase "Lambda identity" $ do
let input = "(\\a : a)"
env = evalSapling Map.empty (parseSapling input)
result env @?= Fork (Stem (Stem Leaf)) (Stem Leaf)
[ testCase "Evaluate single Leaf" $ do
let input = "t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Leaf
, testCase "Evaluate single Stem" $ do
let input = "t t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Stem Leaf
, testCase "Evaluate single Fork" $ do
let input = "t t t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Fork Leaf Leaf
, testCase "Evaluate nested Fork and Stem" $ do
let input = "t (t t) t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Fork (Stem Leaf) Leaf
, testCase "Evaluate `not` function" $ do
let input = "t (t (t t) (t t t)) t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?=
Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
, testCase "Environment updates with definitions" $ do
let input = "x = t\ny = x"
env = evalSapling Map.empty (parseSapling input)
Map.lookup "x" env @?= Just Leaf
Map.lookup "y" env @?= Just Leaf
, testCase "Variable substitution" $ do
let input = "x = t t\ny = t x\ny"
env = evalSapling Map.empty (parseSapling input)
(result env) @?= Stem (Stem Leaf)
, testCase "Multiline input evaluation" $ do
let input = "x = t\ny = t t\nx"
env = evalSapling Map.empty (parseSapling input)
(result env) @?= Leaf
, testCase "Evaluate string literal" $ do
let input = "\"hello\""
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofString "hello"
, testCase "Evaluate list literal" $ do
let input = "[t (t t)]"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofList [Leaf, Stem Leaf]
, testCase "Evaluate empty list" $ do
let input = "[]"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofList []
, testCase "Evaluate variable dependency chain" $ do
let input = "x = t (t t)\n \
\ y = x\n \
\ z = y\n \
\ variablewithamuchlongername = z\n \
\ variablewithamuchlongername"
env = evalSapling Map.empty (parseSapling input)
(result env) @?= (Stem (Stem Leaf))
, testCase "Evaluate variable shadowing" $ do
let input = "x = t t\nx = t\nx"
env = evalSapling Map.empty (parseSapling input)
(result env) @?= Leaf
, testCase "Apply identity to Boolean Not" $ do
let not = "(t (t (t t) (t t t)) t)"
input = "x = (\\a : a)\nx " ++ not
env = evalSapling Map.empty (parseSapling input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
let not = "(t (t (t t) (t t t)) t)"
let input = "x = (\\a : a)\nx " ++ not
env = evalSapling Map.empty (parseSapling input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
, testCase "Constant function matches" $ do
let input = "k = (\\a b : a)\nk (t t) t"
env = evalSapling Map.empty (parseSapling input)
result env @?= Stem Leaf
]
let input = "k = (\\a b : a)\nk (t t) t"
env = evalSapling Map.empty (parseSapling input)
result env @?= Stem Leaf
, testCase "Boolean AND_ TF" $ do
let input = "and (t t) (t)"
env = evalSapling library (parseSapling input)
result env @?= Leaf
, testCase "Boolean AND_ FT" $ do
let input = "and (t) (t t)"
env = evalSapling library (parseSapling input)
result env @?= Leaf
, testCase "Boolean AND_ FF" $ do
let input = "and (t) (t)"
env = evalSapling library (parseSapling input)
result env @?= Leaf
, testCase "Boolean AND_ TT" $ do
let input = "and (t t) (t t)"
env = evalSapling library (parseSapling input)
result env @?= Stem Leaf
, testCase "Verifying Equality" $ do
let input = "equal (t t t) (t t t)"
env = evalSapling library (parseSapling input)
result env @?= Stem Leaf
]
lambdaEvalTests :: TestTree
lambdaEvalTests = testGroup "Lambda Evaluation Tests"
[ testCase "Lambda Identity Function" $ do
let input = "id = (\\x : x)\nid t"
runSapling input @?= "Leaf"
, testCase "Lambda Constant Function (K combinator)" $ do
let input = "k = (\\x y : x)\nk t (t t)"
runSapling input @?= "Leaf"
, testCase "Lambda Application with Variable" $ do
let input = "id = (\\x : x)\nval = t t\nid val"
runSapling input @?= "Stem Leaf"
, testCase "Lambda Application with Multiple Arguments" $ do
let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)"
runSapling input @?= "Leaf"
, testCase "Nested Lambda Application" $ do
let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t"
runSapling input @?= "Leaf"
, testCase "Lambda with a complex body" $ do
let input = "f = (\\x : t (t x))\nf t"
runSapling input @?= "Stem (Stem Leaf)"
, testCase "Lambda returning a function" $ do
let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)"
runSapling input @?= "Leaf"
, testCase "Lambda with Shadowing" $ do
let input = "f = (\\x : (\\x : x))\nf t (t t)"
runSapling input @?= "Stem Leaf"
, testCase "Lambda returning another lambda" $ do
let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)"
runSapling input @?= "Leaf"
, testCase "Lambda with free variables" $ do
let input = "y = t t\nf = (\\x : y)\nf t"
runSapling input @?= "Stem Leaf"
, testCase "SKI Composition" $ do
let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)"
runSapling input @?= "Stem (Stem Leaf)"
, testCase "Lambda with multiple parameters and application" $ do
let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)"
runSapling input @?= "Stem Leaf"
, testCase "Lambda with nested application in the body" $ do
let input = "f = (\\x : t (t (t x)))\nf t"
runSapling input @?= "Stem (Stem (Stem Leaf))"
, testCase "Lambda returning a function and applying it" $ do
let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)"
runSapling input @?= "Fork Leaf (Stem Leaf)"
, testCase "Lambda applying a variable" $ do
let input = "id = (\\x : x)\na = t t\nid a"
runSapling input @?= "Stem Leaf"
, testCase "Nested lambda abstractions in the same expression" $ do
let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t"
runSapling input @?= "Leaf"
, testCase "Lambda with a string literal" $ do
let input = "f = (\\x : x)\nf \"hello\""
runSapling input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
, testCase "Lambda with an integer literal" $ do
let input = "f = (\\x : x)\nf 42"
runSapling input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
, testCase "Lambda with a list literal" $ do
let input = "f = (\\x : x)\nf [t (t t)]"
runSapling input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
]
propertyTests :: TestTree
propertyTests = testGroup "Property Tests"
[ testProperty "Lexing and parsing round-trip" $ \input ->
case runParser saplingLexer "" input of
Left _ -> property True
Right tokens -> case runParser parseExpression "" tokens of
Left _ -> property True
Right ast -> parseSingle input === ast
]
[ testProperty "Lexing and parsing round-trip" $ \input ->
case runParser saplingLexer "" input of
Left _ -> property True
Right tokens -> case runParser parseExpression "" tokens of
Left _ -> property True
Right ast -> parseSingle input === ast
]