Clean up and list SKI conversion fix

This commit is contained in:
James Eversole 2025-04-24 12:14:38 -05:00
parent b8e2743103
commit 3717942589
6 changed files with 140 additions and 81 deletions

View File

@ -62,27 +62,39 @@ evalAST env term
elimLambda :: TricuAST -> TricuAST elimLambda :: TricuAST -> TricuAST
elimLambda = go elimLambda = go
where where
-- η-reduction go term
go (SLambda [v] (SApp f (SVar x))) | etaReduction term = elimLambda $ etaReduceResult term
| v == x && not (isFree v f) = elimLambda f | triagePattern term = _TRI
-- Triage optimization | composePattern term = _B
go (SLambda [a] (SLambda [b] (SLambda [c] body))) | lambdaList term = elimLambda $ lambdaListResult term
| body == triageBody = _TRIAGE | nestedLambda term = nestedLambdaResult term
where | application term = applicationResult term
triageBody = | otherwise = term
SApp (SApp TLeaf (SApp (SApp TLeaf (SVar a)) (SVar b))) (SVar c)
-- Composition optimization etaReduction (SLambda [v] (SApp f (SVar x))) = v == x && not (isFree v f)
go (SLambda [f] (SLambda [g] (SLambda [x] body))) etaReduction _ = False
| body == SApp (SVar f) (SApp (SVar g) (SVar x)) = _B etaReduceResult (SLambda [_] (SApp f _)) = f
-- General elimination
go (SLambda [v] (SList xs)) triagePattern (SLambda [a] (SLambda [b] (SLambda [c] body))) = body == triageBody a b c
= elimLambda (SLambda [v] (foldr wrapTLeaf TLeaf xs)) triagePattern _ = False
where wrapTLeaf m r = SApp (SApp TLeaf m) r
go (SLambda (v:vs) body) composePattern (SLambda [f] (SLambda [g] (SLambda [x] body))) = body == composeBody f g x
| null vs = toSKI v (elimLambda body) composePattern _ = False
| otherwise = elimLambda (SLambda [v] (SLambda vs body))
go (SApp f g) = SApp (elimLambda f) (elimLambda g) lambdaList (SLambda [_] (SList _)) = True
go x = x lambdaList _ = False
lambdaListResult (SLambda [v] (SList xs)) = SLambda [v] (foldr wrapTLeaf TLeaf xs)
wrapTLeaf m r = SApp (SApp TLeaf m) r
nestedLambda (SLambda (_:_) _) = True
nestedLambda _ = False
nestedLambdaResult (SLambda (v:vs) body)
| null vs = toSKI v (elimLambda body)
| otherwise = elimLambda (SLambda [v] (SLambda vs body))
application (SApp _ _) = True
application _ = False
applicationResult (SApp f g) = SApp (elimLambda f) (elimLambda g)
toSKI x (SVar y) toSKI x (SVar y)
| x == y = _I | x == y = _I
@ -90,30 +102,38 @@ elimLambda = go
toSKI x t@(SApp n u) toSKI x t@(SApp n u)
| not (isFree x t) = SApp _K t | not (isFree x t) = SApp _K t
| otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u) | otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u)
toSKI x (SList xs)
| not (isFree x (SList xs)) = SApp _K (SList xs)
| otherwise = SList (map (toSKI x) xs)
toSKI x t toSKI x t
| not (isFree x t) = SApp _K t | not (isFree x t) = SApp _K t
| otherwise = errorWithoutStackTrace "Unhandled toSKI conversion" | otherwise = errorWithoutStackTrace "Unhandled toSKI conversion"
_S = parseSingle "t (t (t t t)) t" -- Combinators and special forms
_K = parseSingle "t t" _S = parseSingle "t (t (t t t)) t"
_I = parseSingle "t (t (t t)) t" _K = parseSingle "t t"
_B = parseSingle "t (t (t t (t (t (t t t)) t))) (t t)" _I = parseSingle "t (t (t t)) t"
_TRIAGE = parseSingle "t (t (t t (t (t (t t t))))) t" _B = parseSingle "t (t (t t (t (t (t t t)) t))) (t t)"
_TRI = parseSingle "t (t (t t (t (t (t t t))))) t"
-- Pattern bodies
triageBody a b c = SApp (SApp TLeaf (SApp (SApp TLeaf (SVar a)) (SVar b))) (SVar c)
composeBody f g x = SApp (SVar f) (SApp (SVar g) (SVar x))
isFree :: String -> TricuAST -> Bool isFree :: String -> TricuAST -> Bool
isFree x = Set.member x . freeVars isFree x = Set.member x . freeVars
freeVars :: TricuAST -> Set.Set String freeVars :: TricuAST -> Set.Set String
freeVars (SVar v ) = Set.singleton v freeVars (SVar v ) = Set.singleton v
freeVars (SInt _ ) = Set.empty
freeVars (SStr _ ) = Set.empty
freeVars (SList s ) = foldMap freeVars s freeVars (SList s ) = foldMap freeVars s
freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v
freeVars (SApp f a ) = freeVars f <> freeVars a freeVars (SApp f a ) = freeVars f <> freeVars a
freeVars TLeaf = Set.empty freeVars (TFork l r ) = freeVars l <> freeVars r
freeVars (SDef _ _ b) = freeVars b freeVars (SDef _ _ b) = freeVars b
freeVars (TStem t ) = freeVars t freeVars (TStem t ) = freeVars t
freeVars (TFork l r ) = freeVars l <> freeVars r freeVars (SInt _ ) = Set.empty
freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v freeVars (SStr _ ) = Set.empty
freeVars TLeaf = Set.empty
freeVars _ = Set.empty freeVars _ = Set.empty
reorderDefs :: Env -> [TricuAST] -> [TricuAST] reorderDefs :: Env -> [TricuAST] -> [TricuAST]
@ -131,7 +151,7 @@ reorderDefs env defs
graph = buildDepGraph defsOnly graph = buildDepGraph defsOnly
sortedDefs = sortDeps graph sortedDefs = sortDeps graph
defMap = Map.fromList [(name, def) | def@(SDef name _ _) <- defsOnly] defMap = Map.fromList [(name, def) | def@(SDef name _ _) <- defsOnly]
orderedDefs = map (\name -> defMap Map.! name) sortedDefs orderedDefs = map (defMap Map.!) sortedDefs
freeVarsDefs = foldMap snd defsWithFreeVars freeVarsDefs = foldMap snd defsWithFreeVars
freeVarsOthers = foldMap freeVars others freeVarsOthers = foldMap freeVars others
@ -139,8 +159,8 @@ reorderDefs env defs
validNames = Set.fromList defNames `Set.union` Set.fromList (Map.keys env) validNames = Set.fromList defNames `Set.union` Set.fromList (Map.keys env)
missingDeps = Set.toList (allFreeVars `Set.difference` validNames) missingDeps = Set.toList (allFreeVars `Set.difference` validNames)
isDef (SDef _ _ _) = True isDef SDef {} = True
isDef _ = False isDef _ = False
buildDepGraph :: [TricuAST] -> Map.Map String (Set.Set String) buildDepGraph :: [TricuAST] -> Map.Map String (Set.Set String)
buildDepGraph topDefs buildDepGraph topDefs

View File

@ -63,18 +63,17 @@ main = do
case args of case args of
Repl -> do Repl -> do
putStrLn "Welcome to the tricu REPL" putStrLn "Welcome to the tricu REPL"
putStrLn "You can exit with `CTRL+D` or the `!exit` command.`" putStrLn "You may exit with `CTRL+D` or the `!exit` command."
putStrLn "Try typing `!` with tab completion for more commands."
repl Map.empty repl Map.empty
Evaluate { file = filePaths, form = form } -> do Evaluate { file = filePaths, form = form } -> do
result <- case filePaths of result <- case filePaths of
[] -> do [] -> runTricuT <$> getContents
t <- getContents
pure $ runTricu t
(filePath:restFilePaths) -> do (filePath:restFilePaths) -> do
initialEnv <- evaluateFile filePath initialEnv <- evaluateFile filePath
finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths
pure $ mainResult finalEnv pure $ mainResult finalEnv
let fRes = formatResult form result let fRes = formatT form result
putStr fRes putStr fRes
TDecode { file = filePaths } -> do TDecode { file = filePaths } -> do
value <- case filePaths of value <- case filePaths of
@ -82,8 +81,48 @@ main = do
(filePath:_) -> readFile filePath (filePath:_) -> readFile filePath
putStrLn $ decodeResult $ result $ evalTricu Map.empty $ parseTricu value putStrLn $ decodeResult $ result $ evalTricu Map.empty $ parseTricu value
runTricu :: String -> T -- Simple interfaces
runTricu input =
runTricu :: String -> String
runTricu = formatT TreeCalculus . runTricuT
runTricuT :: String -> T
runTricuT input =
let asts = parseTricu input let asts = parseTricu input
finalEnv = evalTricu Map.empty asts finalEnv = evalTricu Map.empty asts
in result finalEnv in result finalEnv
runTricuEnv :: Env -> String -> String
runTricuEnv env = formatT TreeCalculus . runTricuTEnv env
runTricuTEnv :: Env -> String -> T
runTricuTEnv env input =
let asts = parseTricu input
finalEnv = evalTricu env asts
in result finalEnv
runTricuWithEnvT :: String -> (Env, T)
runTricuWithEnvT input =
let asts = parseTricu input
finalEnv = evalTricu Map.empty asts
in (finalEnv, result finalEnv)
runTricuWithEnv :: String -> (Env, String)
runTricuWithEnv input =
let asts = parseTricu input
finalEnv = evalTricu Map.empty asts
res = result finalEnv
in (finalEnv, formatT TreeCalculus res)
runTricuEnvWithEnvT :: Env -> String -> (Env, T)
runTricuEnvWithEnvT env input =
let asts = parseTricu input
finalEnv = evalTricu env asts
in (finalEnv, result finalEnv)
runTricuEnvWithEnv :: Env -> String -> (Env, String)
runTricuEnvWithEnv env input =
let asts = parseTricu input
finalEnv = evalTricu env asts
res = result finalEnv
in (finalEnv, formatT TreeCalculus res)

View File

@ -152,7 +152,7 @@ repl env = runInputT settings (withInterrupt (loop env Decode))
newEnv = evalTricu env asts newEnv = evalTricu env asts
case Map.lookup "!result" newEnv of case Map.lookup "!result" newEnv of
Just r -> do Just r -> do
putStrLn $ "tricu > " ++ formatResult form r putStrLn $ "tricu > " ++ formatT form r
Nothing -> pure () Nothing -> pure ()
return newEnv return newEnv
@ -182,7 +182,7 @@ repl env = runInputT settings (withInterrupt (loop env Decode))
liftIO $ writeFile filepath "" liftIO $ writeFile filepath ""
outputStrLn "File created..." outputStrLn "File created..."
forM_ definitions $ \(name, value) -> do forM_ definitions $ \(name, value) -> do
let content = name ++ " = " ++ formatResult TreeCalculus value ++ "\n" let content = name ++ " = " ++ formatT TreeCalculus value ++ "\n"
outputStrLn $ "Writing definition: " ++ name ++ " with length " ++ show (length content) outputStrLn $ "Writing definition: " ++ name ++ " with length " ++ show (length content)
liftIO $ appendFile filepath content liftIO $ appendFile filepath content
outputStrLn $ "Saved " ++ show (length definitions) ++ " definitions to " ++ p outputStrLn $ "Saved " ++ show (length definitions) ++ " definitions to " ++ p

View File

@ -15,7 +15,7 @@ data T = Leaf | Stem T | Fork T T
-- Abstract Syntax Tree for tricu -- Abstract Syntax Tree for tricu
data TricuAST data TricuAST
= SVar String = SVar String
| SInt Int | SInt Integer
| SStr String | SStr String
| SList [TricuAST] | SList [TricuAST]
| SDef String [String] TricuAST | SDef String [String] TricuAST
@ -33,7 +33,7 @@ data LToken
= LKeywordT = LKeywordT
| LIdentifier String | LIdentifier String
| LNamespace String | LNamespace String
| LIntegerLiteral Int | LIntegerLiteral Integer
| LStringLiteral String | LStringLiteral String
| LAssign | LAssign
| LColon | LColon
@ -84,9 +84,9 @@ _not = Fork (Fork _true (Fork Leaf _false)) Leaf
-- Marshalling -- Marshalling
ofString :: String -> T ofString :: String -> T
ofString str = ofList $ map (ofNumber . fromEnum) str ofString str = ofList $ map (ofNumber . toInteger . fromEnum) str
ofNumber :: Int -> T ofNumber :: Integer -> T
ofNumber 0 = Leaf ofNumber 0 = Leaf
ofNumber n = ofNumber n =
Fork Fork
@ -96,7 +96,7 @@ ofNumber n =
ofList :: [T] -> T ofList :: [T] -> T
ofList = foldr Fork Leaf ofList = foldr Fork Leaf
toNumber :: T -> Either String Int toNumber :: T -> Either String Integer
toNumber Leaf = Right 0 toNumber Leaf = Right 0
toNumber (Fork Leaf rest) = case toNumber rest of toNumber (Fork Leaf rest) = case toNumber rest of
Right n -> Right (2 * n) Right n -> Right (2 * n)
@ -108,7 +108,7 @@ toNumber _ = Left "Invalid Tree Calculus number"
toString :: T -> Either String String toString :: T -> Either String String
toString tc = case toList tc of toString tc = case toList tc of
Right list -> traverse (fmap toEnum . toNumber) list Right list -> traverse (fmap (toEnum . fromInteger) . toNumber) list
Left err -> Left "Invalid Tree Calculus string" Left err -> Left "Invalid Tree Calculus string"
toList :: T -> Either String [T] toList :: T -> Either String [T]
@ -119,13 +119,13 @@ toList (Fork x rest) = case toList rest of
toList _ = Left "Invalid Tree Calculus list" toList _ = Left "Invalid Tree Calculus list"
-- Outputs -- Outputs
formatResult :: EvaluatedForm -> T -> String formatT :: EvaluatedForm -> T -> String
formatResult TreeCalculus = toSimpleT . show formatT TreeCalculus = toSimpleT . show
formatResult FSL = show formatT FSL = show
formatResult AST = show . toAST formatT AST = show . toAST
formatResult Ternary = toTernaryString formatT Ternary = toTernaryString
formatResult Ascii = toAscii formatT Ascii = toAscii
formatResult Decode = decodeResult formatT Decode = decodeResult
toSimpleT :: String -> String toSimpleT :: String -> String
toSimpleT s = T.unpack toSimpleT s = T.unpack
@ -166,7 +166,7 @@ decodeResult tc =
(_, _, Right n) -> show n (_, _, Right n) -> show n
(_, Right xs@(_:_), _) -> "[" ++ intercalate ", " (map decodeResult xs) ++ "]" (_, Right xs@(_:_), _) -> "[" ++ intercalate ", " (map decodeResult xs) ++ "]"
(_, Right [], _) -> "[]" (_, Right [], _) -> "[]"
_ -> formatResult TreeCalculus tc _ -> formatT TreeCalculus tc
where where
isCommonChar c = isCommonChar c =
let n = fromEnum c let n = fromEnum c

View File

@ -21,8 +21,8 @@ import qualified Data.Set as Set
main :: IO () main :: IO ()
main = defaultMain tests main = defaultMain tests
runTricu :: String -> String tricuTestString :: String -> String
runTricu s = show $ result (evalTricu Map.empty $ parseTricu s) tricuTestString s = show $ result (evalTricu Map.empty $ parseTricu s)
tests :: TestTree tests :: TestTree
tests = testGroup "Tricu Tests" tests = testGroup "Tricu Tests"
@ -266,7 +266,7 @@ simpleEvaluation = testGroup "Evaluation Tests"
, testCase "Immutable definitions" $ do , testCase "Immutable definitions" $ do
let input = "x = t t\nx = t\nx" let input = "x = t t\nx = t\nx"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
result <- try (evaluate (runTricu input)) :: IO (Either SomeException String) result <- try (evaluate (tricuTestString input)) :: IO (Either SomeException String)
case result of case result of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected evaluation error" Right _ -> assertFailure "Expected evaluation error"
@ -283,84 +283,84 @@ lambdas :: TestTree
lambdas = testGroup "Lambda Evaluation Tests" lambdas = testGroup "Lambda Evaluation Tests"
[ testCase "Lambda Identity Function" $ do [ testCase "Lambda Identity Function" $ do
let input = "id = (x : x)\nid t" let input = "id = (x : x)\nid t"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda Constant Function (K combinator)" $ do , testCase "Lambda Constant Function (K combinator)" $ do
let input = "k = (x y : x)\nk t (t t)" let input = "k = (x y : x)\nk t (t t)"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda Application with Variable" $ do , testCase "Lambda Application with Variable" $ do
let input = "id = (x : x)\nval = t t\nid val" let input = "id = (x : x)\nval = t t\nid val"
runTricu input @?= "Stem Leaf" tricuTestString input @?= "Stem Leaf"
, testCase "Lambda Application with Multiple Arguments" $ do , testCase "Lambda Application with Multiple Arguments" $ do
let input = "apply = (f x y : f x y)\nk = (a b : a)\napply k t (t t)" let input = "apply = (f x y : f x y)\nk = (a b : a)\napply k t (t t)"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Nested Lambda Application" $ do , testCase "Nested Lambda Application" $ do
let input = "apply = (f x y : f x y)\nid = (x : x)\napply (f x : f x) id t" let input = "apply = (f x y : f x y)\nid = (x : x)\napply (f x : f x) id t"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda with a complex body" $ do , testCase "Lambda with a complex body" $ do
let input = "f = (x : t (t x))\nf t" let input = "f = (x : t (t x))\nf t"
runTricu input @?= "Stem (Stem Leaf)" tricuTestString input @?= "Stem (Stem Leaf)"
, testCase "Lambda returning a function" $ do , testCase "Lambda returning a function" $ do
let input = "f = (x : (y : x))\ng = f t\ng (t t)" let input = "f = (x : (y : x))\ng = f t\ng (t t)"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda with Shadowing" $ do , testCase "Lambda with Shadowing" $ do
let input = "f = (x : (x : x))\nf t (t t)" let input = "f = (x : (x : x))\nf t (t t)"
runTricu input @?= "Stem Leaf" tricuTestString input @?= "Stem Leaf"
, testCase "Lambda returning another lambda" $ do , testCase "Lambda returning another lambda" $ do
let input = "k = (x : (y : x))\nk_app = k t\nk_app (t t)" let input = "k = (x : (y : x))\nk_app = k t\nk_app (t t)"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda with free variables" $ do , testCase "Lambda with free variables" $ do
let input = "y = t t\nf = (x : y)\nf t" let input = "y = t t\nf = (x : y)\nf t"
runTricu input @?= "Stem Leaf" tricuTestString input @?= "Stem Leaf"
, testCase "SKI Composition" $ do , testCase "SKI Composition" $ do
let input = "s = (x y z : x z (y z))\nk = (x y : x)\ni = (x : x)\ncomp = s k i\ncomp t (t t)" let input = "s = (x y z : x z (y z))\nk = (x y : x)\ni = (x : x)\ncomp = s k i\ncomp t (t t)"
runTricu input @?= "Stem (Stem Leaf)" tricuTestString input @?= "Stem (Stem Leaf)"
, testCase "Lambda with multiple parameters and application" $ do , testCase "Lambda with multiple parameters and application" $ do
let input = "f = (a b c : t a b c)\nf t (t t) (t t t)" let input = "f = (a b c : t a b c)\nf t (t t) (t t t)"
runTricu input @?= "Stem Leaf" tricuTestString input @?= "Stem Leaf"
, testCase "Lambda with nested application in the body" $ do , testCase "Lambda with nested application in the body" $ do
let input = "f = (x : t (t (t x)))\nf t" let input = "f = (x : t (t (t x)))\nf t"
runTricu input @?= "Stem (Stem (Stem Leaf))" tricuTestString input @?= "Stem (Stem (Stem Leaf))"
, testCase "Lambda returning a function and applying it" $ do , testCase "Lambda returning a function and applying it" $ do
let input = "f = (x : (y : t x y))\ng = f t\ng (t t)" let input = "f = (x : (y : t x y))\ng = f t\ng (t t)"
runTricu input @?= "Fork Leaf (Stem Leaf)" tricuTestString input @?= "Fork Leaf (Stem Leaf)"
, testCase "Lambda applying a variable" $ do , testCase "Lambda applying a variable" $ do
let input = "id = (x : x)\na = t t\nid a" let input = "id = (x : x)\na = t t\nid a"
runTricu input @?= "Stem Leaf" tricuTestString input @?= "Stem Leaf"
, testCase "Nested lambda abstractions in the same expression" $ do , testCase "Nested lambda abstractions in the same expression" $ do
let input = "f = (x : (y : x y))\ng = (z : z)\nf g t" let input = "f = (x : (y : x y))\ng = (z : z)\nf g t"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda applied to string literal" $ do , testCase "Lambda applied to string literal" $ do
let input = "f = (x : x)\nf \"hello\"" let input = "f = (x : x)\nf \"hello\""
runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))" tricuTestString input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
, testCase "Lambda applied to integer literal" $ do , testCase "Lambda applied to integer literal" $ do
let input = "f = (x : x)\nf 42" let input = "f = (x : x)\nf 42"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))" tricuTestString input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
, testCase "Lambda applied to list literal" $ do , testCase "Lambda applied to list literal" $ do
let input = "f = (x : x)\nf [t (t t)]" let input = "f = (x : x)\nf [t (t t)]"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)" tricuTestString input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
, testCase "Lambda containing list literal" $ do , testCase "Lambda containing list literal" $ do
let input = "(a : [(a)]) 1" let input = "(a : [(a)]) 1"
runTricu input @?= "Fork (Fork (Stem Leaf) Leaf) Leaf" tricuTestString input @?= "Fork (Fork (Stem Leaf) Leaf) Leaf"
] ]
providedLibraries :: TestTree providedLibraries :: TestTree

View File

@ -1,7 +1,7 @@
cabal-version: 1.12 cabal-version: 1.12
name: tricu name: tricu
version: 0.18.1 version: 0.19.0
description: A micro-language for exploring Tree Calculus description: A micro-language for exploring Tree Calculus
author: James Eversole author: James Eversole
maintainer: james@eversole.co maintainer: james@eversole.co