5 Commits

Author SHA1 Message Date
92a3b95935 Release 0.6.0
Some checks failed
Test, Build, and Release / test (push) Successful in 1m54s
Test, Build, and Release / build (push) Has been cancelled
2025-01-23 16:41:06 -06:00
9fd8a85af9 Polluting my action run history a little bit more 2025-01-23 16:27:24 -06:00
e06a124733 ??
Some checks failed
Test, Build, and Release / test (push) Successful in 1m38s
Test, Build, and Release / build (push) Failing after 1m57s
2025-01-23 16:20:06 -06:00
13d95290b9 ?
Some checks failed
Test, Build, and Release / test (push) Successful in 1m33s
Test, Build, and Release / build (push) Has been cancelled
2025-01-23 16:09:20 -06:00
2bbcc2e6be Attempt to release 2025-01-23 16:07:49 -06:00
36 changed files with 377 additions and 840 deletions

View File

@ -28,6 +28,16 @@ jobs:
restore-keys: | restore-keys: |
cabal- cabal-
- name: Set up cache for Nix
uses: actions/cache@v4
with:
path: |
/nix/store
/nix/var/nix/cache
key: nix-${{ hashFiles('flake.lock') }}
restore-keys: |
nix-
- name: Initialize Cabal and update package list - name: Initialize Cabal and update package list
run: | run: |
nix develop --command cabal update nix develop --command cabal update
@ -48,18 +58,29 @@ jobs:
with: with:
fetch-depth: 0 fetch-depth: 0
- name: Build and shrink binary - name: Set up cache for Nix
uses: actions/cache@v4
with:
path: |
/nix/store
/nix/var/nix/cache
key: nix-${{ hashFiles('flake.lock') }}
restore-keys: |
nix-
- name: Build binary
run: | run: |
nix build nix build
cp -L ./result/bin/tricu ./tricu ls -alh ./result/bin/tricu
chmod 755 ./tricu
nix develop --command upx ./tricu - name: Setup go for release actoin
uses: actions/setup-go@v5
with:
go-version: '>=1.20.1'
- name: Release binary - name: Release binary
uses: akkuman/gitea-release-action@v1 uses: https://gitea.com/actions/release-action@main
with: with:
files: |- files: |-
./tricu ./result/bin/tricu
token: '${{ secrets.RELEASE_TOKEN }}' api_key: '${{ secrets.RELEASE_TOKEN }}'
body: '${{ gitea.event.head_commit.message }}'
prerelease: true

View File

@ -2,23 +2,21 @@
## Introduction ## Introduction
tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. It is fundamentally based on the application of [Tree Calculus](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf) terms, but minimal syntax sugar is included to provide a useful programming tool. tricu is under active development and you can expect breaking changes with nearly every commit. tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. [I'm](https://eversole.co) developing tricu to further research the possibilities offered by the various forms of [Tree Calculi](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf).
tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`. tricu offers minimal syntax sugar yet manages to provide a complete, intuitive, and familiar programming environment. There is great power in simplicity. tricu offers:
## Features 1. `t` operator behaving by the rules of Tree Calculus
1. Function definitions/assignments
1. Lambda abstractions eliminated to Tree Calculus forms
1. List, Number, and String literals
1. Parentheses for grouping function application
- Tree Calculus operator: `t` These features move us cleanly out of the [turing tarpit](https://en.wikipedia.org/wiki/Turing_tarpit) territory that you may find yourself in if you try working only with the `t` operator.
- Assignments: `x = t t`
- Immutable definitions
- Lambda abstraction syntax: `id = (\a : a)`
- List, Number, and String literals: `[(2) ("Hello")]`
- Function application: `not (not false)`
- Higher order/first-class functions: `map (\a : lconcat a "!") [("Hello")]`
- Intensionality blurs the distinction between functions and data (see REPL examples)
- Simple module system for code organization
## REPL examples tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`. This project was named "sapling" until I discovered the name is already being used for other (completely unrelated) programming language development projects.
## What does it look like?
``` ```
tricu < -- Anything after `--` on a single line is a comment tricu < -- Anything after `--` on a single line is a comment
@ -28,24 +26,19 @@ tricu > "Hello, world!"
tricu < id (head (map (\i : lconcat i " world!") [("Hello, ")])) tricu < id (head (map (\i : lconcat i " world!") [("Hello, ")]))
tricu > "Hello, world!" tricu > "Hello, world!"
tricu < -- Intensionality! We can inspect the structure of a function or data. tricu < -- Intensionality! We can inspect the structure of a function.
tricu < triage = (\a b c : t (t a b) c) tricu < triage = (\a b c : t (t a b) c)
tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork") tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork")
tricu < test (t t) tricu < test (t t)
tricu > "Stem" tricu > "Stem"
tricu < -- We can even convert a term back to source code (/demos/toSource.tri) tricu < -- We can even write a function to convert a term back to source code
tricu < toSource not? tricu < toSource not?
tricu > "(t (t (t t) (t t t)) (t t (t t t)))" tricu > "(t (t (t t) (t t t)) (t t (t t t)))"
tricu < -- or calculate its size (/demos/size.tri)
tricu < size not?
tricu > 12
``` ```
## Installation and Use ## Installation and Use
[Releases are available for Linux.](https://git.eversole.co/James/tricu/releases) You can easily build and/or run this project using [Nix](https://nixos.org/download/).
Or you can easily build and run this project using [Nix](https://nixos.org/download/).
- Quick Start (REPL): - Quick Start (REPL):
- `nix run git+https://git.eversole.co/James/tricu` - `nix run git+https://git.eversole.co/James/tricu`
@ -72,7 +65,7 @@ tricu eval [OPTIONS]
-f --file=FILE Input file path(s) for evaluation. -f --file=FILE Input file path(s) for evaluation.
Defaults to stdin. Defaults to stdin.
-t --form=FORM Optional output form: (tree|fsl|ast|ternary|ascii|decode). -t --form=FORM Optional output form: (tree|fsl|ast|ternary|ascii).
Defaults to tricu-compatible `t` tree form. Defaults to tricu-compatible `t` tree form.
tricu decode [OPTIONS] tricu decode [OPTIONS]
@ -86,4 +79,4 @@ tricu decode [OPTIONS]
Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog). Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog).
[treecalcul.us](https://treecalcul.us) is an excellent website with an intuitive Tree Calculus code playground created by [Johannes Bader](https://johannes-bader.com/) that introduced me to Tree Calculus. [treecalcul.us](https://treecalcul.us) is an excellent website with an intuitive playground created by [Johannes Bader](https://johannes-bader.com/) that introduced me to Tree Calculus. If tricu sounds interesting but compiling this repo sounds like a hassle, you should check out his site.

View File

@ -1,41 +1,24 @@
!module Equality false = t
true = t t
!import "lib/base.tri" Lib triage = (\a b c : t (t a b) c)
main = lambdaEqualsTC matchBool = (\ot of : triage
-- We represent `false` with a Leaf and `true` with a Stem Leaf
demo_false = t
demo_true = t t
-- Tree Calculus representation of the Boolean `not` function
not_TC? = t (t (t t) (t t t)) (t t (t t t))
-- /demos/toSource.tri contains an explanation of `triage`
demo_triage = \a b c : t (t a b) c
demo_matchBool = (\ot of : demo_triage
of of
(\_ : ot) (\_ : ot)
(\_ _ : ot) (\_ _ : ot)
) )
-- Lambda representation of the Boolean `not` function
not_Lambda? = demo_matchBool demo_false demo_true
-- Since tricu eliminates Lambda terms to SKI combinators, the tree form of many not_TC? = t (t (t t) (t t t)) (t t (t t t))
-- functions defined via Lambda terms are larger than the most efficient TC not_Lambda? = matchBool false true
-- representation. Between different languages that evaluate to tree calculus
-- terms, the exact implementation of Lambda elimination may differ and lead
-- to different tree representations even if they share extensional behavior.
-- Let's see if these are the same: areEqual? = equal not_TC not_Lambda
lambdaEqualsTC = Lib.equal? not_TC? not_Lambda?
-- Here are some checks to verify their extensional behavior is the same: true_TC? = not_TC false
true_TC? = not_TC? demo_false false_TC? = not_TC true
false_TC? = not_TC? demo_true
true_Lambda? = not_Lambda? demo_false true_Lambda? = not_Lambda false
false_Lambda? = not_Lambda? demo_true false_Lambda? = not_Lambda true
bothTrueEqual? = Lib.equal? true_TC? true_Lambda? areTrueEqual? = equal true_TC true_Lambda
bothFalseEqual? = Lib.equal? false_TC? false_Lambda? areFalseEqual? = equal false_TC false_Lambda

View File

@ -1,14 +1,11 @@
!module LOT
!import "lib/base.tri" Lib
main = exampleTwo
-- Level Order Traversal of a labelled binary tree -- Level Order Traversal of a labelled binary tree
-- Objective: Print each "level" of the tree on a separate line -- Objective: Print each "level" of the tree on a separate line
-- --
-- We model labelled binary trees as nested lists where values act as labels. We -- NOTICE: This demo relies on tricu base library functions
-- require explicit notation of empty nodes. Empty nodes can be represented --
-- with an empty list, `[]`, which evaluates to a single node `t`. -- We model labelled binary trees as sublists where values act as labels. We
-- require explicit notation of empty nodes. Empty nodes can be represented
-- with an empty list, `[]`, which is equivalent to a single node `t`.
-- --
-- Example tree inputs: -- Example tree inputs:
-- [("1") [("2") [("4") t t] t] [("3") [("5") t t] [("6") t t]]]] -- [("1") [("2") [("4") t t] t] [("3") [("5") t t] [("6") t t]]]]
@ -18,42 +15,43 @@ main = exampleTwo
-- 2 3 -- 2 3
-- / / \ -- / / \
-- 4 5 6 -- 4 5 6
--
label = \node : Lib.head node label = (\node : head node)
left = (\node : Lib.if (Lib.emptyList? node) left = (\node : if (emptyList node)
[] []
(Lib.if (Lib.emptyList? (Lib.tail node)) (if (emptyList (tail node))
[] []
(Lib.head (Lib.tail node)))) (head (tail node))))
right = (\node : Lib.if (Lib.emptyList? node) right = (\node : if (emptyList node)
[] []
(Lib.if (Lib.emptyList? (Lib.tail node)) (if (emptyList (tail node))
[] []
(Lib.if (Lib.emptyList? (Lib.tail (Lib.tail node))) (if (emptyList (tail (tail node)))
[] []
(Lib.head (Lib.tail (Lib.tail node)))))) (head (tail (tail node))))))
processLevel = Lib.y (\self queue : Lib.if (Lib.emptyList? queue) processLevel = y (\self queue : if (emptyList queue)
[] []
(Lib.pair (Lib.map label queue) (self (Lib.filter (pair (map label queue) (self (filter
(\node : Lib.not? (Lib.emptyList? node)) (\node : not (emptyList node))
(Lib.lconcat (Lib.map left queue) (Lib.map right queue)))))) (lconcat (map left queue) (map right queue))))))
levelOrderTraversal_ = \a : processLevel (t a t) levelOrderTraversal_ = (\a : processLevel (t a t))
toLineString = Lib.y (\self levels : Lib.if (Lib.emptyList? levels) toLineString = y (\self levels : if (emptyList levels)
"" ""
(Lib.lconcat (lconcat
(Lib.lconcat (Lib.map (\x : Lib.lconcat x " ") (Lib.head levels)) "") (lconcat (map (\x : lconcat x " ") (head levels)) "")
(Lib.if (Lib.emptyList? (Lib.tail levels)) "" (Lib.lconcat (t (t 10 t) t) (self (Lib.tail levels)))))) (if (emptyList (tail levels)) "" (lconcat (t (t 10 t) t) (self (tail levels))))))
levelOrderToString = \s : toLineString (levelOrderTraversal_ s) levelOrderToString = (\s : toLineString (levelOrderTraversal_ s))
flatten = Lib.foldl (\acc x : Lib.lconcat acc x) "" flatten = foldl (\acc x : lconcat acc x) ""
levelOrderTraversal = \s : Lib.lconcat (t 10 t) (flatten (levelOrderToString s)) levelOrderTraversal = (\s : lconcat (t 10 t) (flatten (levelOrderToString s)))
exampleOne = levelOrderTraversal [("1") exampleOne = levelOrderTraversal [("1")
[("2") [("4") t t] t] [("2") [("4") t t] t]
@ -63,3 +61,5 @@ exampleTwo = levelOrderTraversal [("1")
[("2") [("4") [("8") t t] [("9") t t]] [("2") [("4") [("8") t t] [("9") t t]]
[("6") [("10") t t] [("12") t t]]] [("6") [("10") t t] [("12") t t]]]
[("3") [("5") [("11") t t] t] [("7") t t]]] [("3") [("5") [("11") t t] t] [("7") t t]]]
exampleTwo

View File

@ -1,25 +0,0 @@
!module Size
!import "lib/base.tri" Lib
main = size size
compose = \f g x : f (g x)
succ = Lib.y (\self :
Lib.triage
1
t
(Lib.triage
(t (t t))
(\_ Lib.tail : t t (self Lib.tail))
t))
size = (\x :
(Lib.y (\self x :
compose succ
(Lib.triage
(\x : x)
self
(\x y : compose (self x) (self y))
x)) x 0))

View File

@ -1,51 +1,46 @@
!module ToSource
!import "lib/base.tri" Lib
main = toSource Lib.not?
-- Thanks to intensionality, we can inspect the structure of a given value -- Thanks to intensionality, we can inspect the structure of a given value
-- even if it's a function. This includes lambdas which are eliminated to -- even if it's a function. This includes lambdas which are eliminated to
-- Tree Calculus (TC) terms during evaluation. -- Tree Calculus (TC) terms during evaluation.
-- `triage` takes four arguments: the first three represent behaviors for each -- Triage takes four arguments: the first three represent behaviors for each
-- structural case in Tree Calculus (Leaf, Stem, and Fork). -- structural case in Tree Calculus (Leaf, Stem, and Fork).
-- The fourth argument is the value whose structure is inspected. By evaluating -- The fourth argument is the value whose structure is inspected. By evaluating
-- the Tree Calculus term, `triage` enables branching logic based on the term's -- the Tree Calculus term, `triage` enables branching logic based on the term's
-- shape, making it possible to perform structure-specific operations such as -- shape, making it possible to perform structure-specific operations such as
-- reconstructing the terms' source code representation. -- reconstructing the terms' source code representation.
-- triage = (\leaf stem fork : t (t leaf stem) fork) triage = (\a b c : t (t a b) c)
-- Base case of a single Leaf -- Base case of a single Leaf
sourceLeaf = t (Lib.head "t") sourceLeaf = t (head "t")
-- Stem case -- Stem case
sourceStem = (\convert : (\a rest : sourceStem = (\convert : (\a rest :
t (Lib.head "(") -- Start with a left parenthesis "(". t (head "(") -- Start with a left parenthesis "(".
(t (Lib.head "t") -- Add a "t" (t (head "t") -- Add a "t"
(t (Lib.head " ") -- Add a space. (t (head " ") -- Add a space.
(convert a -- Recursively convert the argument. (convert a -- Recursively convert the argument.
(t (Lib.head ")") rest)))))) -- Close with ")" and append the rest. (t (head ")") rest)))))) -- Close with ")" and append the rest.
-- Fork case -- Fork case
sourceFork = (\convert : (\a b rest : sourceFork = (\convert : (\a b rest :
t (Lib.head "(") -- Start with a left parenthesis "(". t (head "(") -- Start with a left parenthesis "(".
(t (Lib.head "t") -- Add a "t" (t (head "t") -- Add a "t"
(t (Lib.head " ") -- Add a space. (t (head " ") -- Add a space.
(convert a -- Recursively convert the first arg. (convert a -- Recursively convert the first arg.
(t (Lib.head " ") -- Add another space. (t (head " ") -- Add another space.
(convert b -- Recursively convert the second arg. (convert b -- Recursively convert the second arg.
(t (Lib.head ")") rest)))))))) -- Close with ")" and append the rest. (t (head ")") rest)))))))) -- Close with ")" and append the rest.
-- Wrapper around triage -- Wrapper around triage
toSource_ = Lib.y (\self arg : toSource_ = y (\self arg :
Lib.triage triage
sourceLeaf -- `triage` "a" case, Leaf sourceLeaf -- Triage `a` case, Leaf
(sourceStem self) -- `triage` "b" case, Stem (sourceStem self) -- Triage `b` case, Stem
(sourceFork self) -- `triage` "c" case, Fork (sourceFork self) -- Triage `c` case, Fork
arg) -- The term to be inspected arg) -- The term to be inspected
-- toSource takes a single TC term and returns a String -- toSource takes a single TC term and returns a String
toSource = \v : toSource_ v "" toSource = (\v : toSource_ v "")
exampleOne = toSource Lib.true -- OUT: "(t t)" exampleOne = toSource true -- OUT: "(t t)"
exampleTwo = toSource Lib.not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))" exampleTwo = toSource not -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"

View File

@ -32,11 +32,10 @@
defaultPackage = self.packages.${system}.default; defaultPackage = self.packages.${system}.default;
devShells.default = pkgs.mkShell { devShells.default = pkgs.mkShell {
buildInputs = with pkgs; [ buildInputs = with pkgs.haskellPackages; [
haskellPackages.cabal-install cabal-install
haskellPackages.ghcid ghcid
customGHC customGHC
upx
]; ];
inputsFrom = builtins.attrValues self.packages.${system}; inputsFrom = builtins.attrValues self.packages.${system};
}; };

View File

@ -7,26 +7,37 @@ s = t (t (k t)) t
m = s i i m = s i i
b = s (k s) k b = s (k s) k
c = s (s (k s) (s (k k) s)) (k k) c = s (s (k s) (s (k k) s)) (k k)
id = \a : a iC = (\a b c : s a (k c) b)
iD = b (b iC) iC
iE = b (b iD) iC
yi = (\i : b m (c b (i m)))
y = yi iC
yC = yi iD
yD = yi iE
id = (\a : a)
pair = t pair = t
if = \cond then else : t (t else (t t then)) t cond if = (\cond then else : t (t else (t t then)) t cond)
y = ((\mut wait fun : wait mut (\x : fun (wait mut x))) triage = (\a b c : t (t a b) c)
(\x : x x)
(\a0 a1 a2 : t (t a0) (t t a2) a1))
triage = \leaf stem fork : t (t leaf stem) fork
test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork") test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork")
matchBool = (\ot of : triage matchBool = (\ot of : triage
of of
(\_ : ot) (\_ : ot)
(\_ _ : ot) (\_ _ : ot)
) )
matchList = \a b : triage a _ b matchList = (\oe oc : triage
oe
_
oc
)
matchPair = \a : triage _ _ a matchPair = (\op : triage
_
_
op
)
not? = matchBool false true not? = matchBool false true
and? = matchBool id (\_ : false) and? = matchBool id (\_ : false)
@ -35,49 +46,51 @@ emptyList? = matchList true (\_ _ : false)
head = matchList t (\head _ : head) head = matchList t (\head _ : head)
tail = matchList t (\_ tail : tail) tail = matchList t (\_ tail : tail)
lconcat = y (\self : matchList lconcat = y (\self : matchList
(\k : k) (\k : k)
(\h r k : pair h (self r k))) (\h r k : pair h (self r k)))
lAnd = (triage lAnd = (triage
(\_ : false) (\_ : false)
(\_ x : x) (\_ x : x)
(\_ _ x : x)) (\_ _ x : x)
)
lOr = (triage lOr = (triage
(\x : x) (\x : x)
(\_ _ : true) (\_ _ : true)
(\_ _ _ : true)) (\_ _ _ : true)
)
map_ = y (\self : map_ = y (\self :
matchList matchList
(\_ : t) (\_ : t)
(\head tail f : pair (f head) (self tail f))) (\head tail f : pair (f head) (self tail f)))
map = \f l : map_ l f map = (\f l : map_ l f)
equal? = y (\self : triage equal? = y (\self : triage
(triage (triage
true true
(\_ : false) (\_ : false)
(\_ _ : false)) (\_ _ : false))
(\ax : (\ax :
triage triage
false false
(self ax) (self ax)
(\_ _ : false)) (\_ _ : false))
(\ax ay : (\ax ay :
triage triage
false false
(\_ : false) (\_ : false)
(\bx by : lAnd (self ax bx) (self ay by)))) (\bx by : lAnd (self ax bx) (self ay by))))
filter_ = y (\self : matchList filter_ = y (\self : matchList
(\_ : t) (\_ : t)
(\head tail f : matchBool (t head) i (f head) (self tail f))) (\head tail f : matchBool (t head) i (f head) (self tail f)))
filter = \f l : filter_ l f filter = (\f l : filter_ l f)
foldl_ = y (\self f l x : matchList (\acc : acc) (\head tail acc : self f tail (f acc head)) l x) foldl_ = y (\self f l x : matchList (\acc : acc) (\head tail acc : self f tail (f acc head)) l x)
foldl = \f x l : foldl_ f l x foldl = (\f x l : foldl_ f l x)
foldr_ = y (\self x f l : matchList x (\head tail : f (self x f tail) head) l) foldr_ = y (\self x f l : matchList x (\head tail : f (self x f tail) head) l)
foldr = \f x l : foldr_ x f l foldr = (\f x l : foldr_ x f l)

View File

@ -3,43 +3,33 @@ module Eval where
import Parser import Parser
import Research import Research
import Data.List (partition, (\\))
import Data.Map (Map) import Data.Map (Map)
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Set as Set import qualified Data.Set as Set
evalSingle :: Env -> TricuAST -> Env evalSingle :: Env -> TricuAST -> Env
evalSingle env term evalSingle env term
| SDef name [] body <- term | SFunc name [] body <- term =
= case Map.lookup name env of let res = evalAST env body
Just existingValue in Map.insert "__result" res (Map.insert name res env)
| existingValue == evalAST env body -> env | SApp func arg <- term =
| otherwise -> errorWithoutStackTrace $ let res = apply (evalAST env func) (evalAST env arg)
"Unable to rebind immutable identifier: '" ++ name in Map.insert "__result" res env
Nothing -> | SVar name <- term =
let res = evalAST env body case Map.lookup name env of
in Map.insert "!result" res (Map.insert name res env) Just v -> Map.insert "__result" v env
| SApp func arg <- term Nothing -> errorWithoutStackTrace $ "Variable " ++ name ++ " not defined"
= let res = apply (evalAST env func) (evalAST env arg) | otherwise =
in Map.insert "!result" res env Map.insert "__result" (evalAST env term) env
| SVar name <- term
= case Map.lookup name env of
Just v -> Map.insert "!result" v env
Nothing ->
errorWithoutStackTrace $ "Variable `" ++ name ++ "` not defined\n\
\This error should never occur here. Please report this as an issue."
| otherwise
= Map.insert "!result" (evalAST env term) env
evalTricu :: Env -> [TricuAST] -> Env evalTricu :: Env -> [TricuAST] -> Env
evalTricu env x = go env (reorderDefs env x) evalTricu env [] = env
where evalTricu env [x] =
go env [] = env let updatedEnv = evalSingle env x
go env [x] = in Map.insert "__result" (result updatedEnv) updatedEnv
let updatedEnv = evalSingle env x evalTricu env (x:xs) =
in Map.insert "!result" (result updatedEnv) updatedEnv evalTricu (evalSingle env x) xs
go env (x:xs) =
evalTricu (evalSingle env x) xs
evalAST :: Env -> TricuAST -> T evalAST :: Env -> TricuAST -> T
evalAST env term evalAST env term
@ -59,29 +49,16 @@ evalAST env term
(errorWithoutStackTrace $ "Variable " ++ name ++ " not defined") (errorWithoutStackTrace $ "Variable " ++ name ++ " not defined")
name env name env
-- https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf
-- Chapter 4: Lambda-Abstraction
elimLambda :: TricuAST -> TricuAST elimLambda :: TricuAST -> TricuAST
elimLambda = go elimLambda = go
where where
-- η-reduction
go (SLambda [v] (SApp f (SVar x)))
| v == x && not (isFree v f) = elimLambda f
-- Triage optimization
go (SLambda [a] (SLambda [b] (SLambda [c] body)))
| body == triageBody = _TRIAGE
where
triageBody =
(SApp (SApp TLeaf (SApp (SApp TLeaf (SVar a)) (SVar b))) (SVar c))
-- Composition optimization
go (SLambda [f] (SLambda [g] (SLambda [x] body)))
| body == composeBody = _COMPOSE
where
composeBody = SApp (SVar f) (SApp (SVar g) (SVar x))
-- General elimination
go (SLambda (v:vs) body) go (SLambda (v:vs) body)
| null vs = toSKI v (elimLambda body) | null vs = toSKI v (elimLambda body)
| otherwise = elimLambda (SLambda [v] (SLambda vs body)) | otherwise = elimLambda (SLambda [v] (SLambda vs body))
go (SApp f g) = SApp (elimLambda f) (elimLambda g) go (SApp f g) = SApp (elimLambda f) (elimLambda g)
go x = x go x = x
toSKI x (SVar y) toSKI x (SVar y)
| x == y = _I | x == y = _I
@ -91,101 +68,25 @@ elimLambda = go
| otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u) | otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u)
toSKI x t toSKI x t
| not (isFree x t) = SApp _K t | not (isFree x t) = SApp _K t
| otherwise = errorWithoutStackTrace "Unhandled toSKI conversion" | otherwise = SApp (SApp _S (toSKI x t)) TLeaf
_S = parseSingle "t (t (t t t)) t" _S = parseSingle "t (t (t t t)) t"
_K = parseSingle "t t" _K = parseSingle "t t"
_I = parseSingle "t (t (t t)) t" _I = parseSingle "t (t (t t)) t"
_TRIAGE = parseSingle "t (t (t t (t (t (t t t))))) t"
_COMPOSE = parseSingle "t (t (t t (t (t (t t t)) t))) (t t)" isFree x = Set.member x . freeVars
freeVars (SVar v ) = Set.singleton v
isFree :: String -> TricuAST -> Bool freeVars (SInt _ ) = Set.empty
isFree x = Set.member x . freeVars freeVars (SStr _ ) = Set.empty
freeVars (SList s ) = foldMap freeVars s
freeVars :: TricuAST -> Set.Set String freeVars (SApp f a ) = freeVars f <> freeVars a
freeVars (SVar v ) = Set.singleton v freeVars (TLeaf ) = Set.empty
freeVars (SInt _ ) = Set.empty freeVars (SFunc _ _ b) = freeVars b
freeVars (SStr _ ) = Set.empty freeVars (TStem t ) = freeVars t
freeVars (SList s ) = foldMap freeVars s freeVars (TFork l r ) = freeVars l <> freeVars r
freeVars (SApp f a ) = freeVars f <> freeVars a freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v
freeVars (TLeaf ) = Set.empty
freeVars (SDef _ _ b) = freeVars b
freeVars (TStem t ) = freeVars t
freeVars (TFork l r ) = freeVars l <> freeVars r
freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v
freeVars _ = Set.empty
reorderDefs :: Env -> [TricuAST] -> [TricuAST]
reorderDefs env defs
| not (null missingDeps) =
errorWithoutStackTrace $
"Missing dependencies detected: " ++ show missingDeps
| otherwise = orderedDefs ++ others
where
(defsOnly, others) = partition isDef defs
defNames = [ name | SDef name _ _ <- defsOnly ]
defsWithFreeVars = [(def, freeVars body) | def@(SDef _ _ body) <- defsOnly]
graph = buildDepGraph defsOnly
sortedDefs = sortDeps graph
defMap = Map.fromList [(name, def) | def@(SDef name _ _) <- defsOnly]
orderedDefs = map (\name -> defMap Map.! name) sortedDefs
freeVarsDefs = foldMap snd defsWithFreeVars
freeVarsOthers = foldMap freeVars others
allFreeVars = freeVarsDefs <> freeVarsOthers
validNames = Set.fromList defNames `Set.union` Set.fromList (Map.keys env)
missingDeps = Set.toList (allFreeVars `Set.difference` validNames)
isDef (SDef _ _ _) = True
isDef _ = False
buildDepGraph :: [TricuAST] -> Map.Map String (Set.Set String)
buildDepGraph topDefs
| not (null duplicateNames) =
errorWithoutStackTrace $
"Duplicate definitions detected: " ++ show duplicateNames
| otherwise =
Map.fromList
[ (name, depends topDefs (SDef name [] body))
| SDef name _ body <- topDefs]
where
names = [name | SDef name _ _ <- topDefs]
duplicateNames =
[ name | (name, count) <- Map.toList (countOccurrences names) , count > 1]
countOccurrences = foldr (\x -> Map.insertWith (+) x 1) Map.empty
sortDeps :: Map.Map String (Set.Set String) -> [String]
sortDeps graph = go [] Set.empty (Map.keys graph)
where
go sorted sortedSet [] = sorted
go sorted sortedSet remaining =
let ready = [ name | name <- remaining
, let deps = Map.findWithDefault Set.empty name graph
, Set.isSubsetOf deps sortedSet ]
notReady = remaining \\ ready
in if null ready
then errorWithoutStackTrace
"ERROR: Cyclic dependency detected and prohibited.\n\
\RESOLVE: Use nested lambdas."
else go (sorted ++ ready)
(Set.union sortedSet (Set.fromList ready))
notReady
depends :: [TricuAST] -> TricuAST -> Set.Set String
depends topDefs (SDef _ _ body) =
Set.intersection
(Set.fromList [n | SDef n _ _ <- topDefs])
(freeVars body)
depends _ _ = Set.empty
result :: Env -> T result :: Env -> T
result r = case Map.lookup "!result" r of result r = case Map.lookup "__result" r of
Just a -> a Just a -> a
Nothing -> errorWithoutStackTrace "No !result field found in provided env" Nothing -> errorWithoutStackTrace "No __result field found in provided environment"
mainResult :: Env -> T
mainResult r = case Map.lookup "main" r of
Just a -> a
Nothing -> errorWithoutStackTrace "No valid definition for `main` found."

View File

@ -1,150 +1,30 @@
module FileEval where module FileEval where
import Eval import Eval
import Lexer
import Parser import Parser
import Research import Research
import Data.List (partition)
import Control.Monad (foldM)
import System.IO import System.IO
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Set as Set
evaluateFileResult :: FilePath -> IO T evaluateFileResult :: FilePath -> IO T
evaluateFileResult filePath = do evaluateFileResult filePath = do
contents <- readFile filePath contents <- readFile filePath
let tokens = lexTricu contents let asts = parseTricu contents
let moduleName = case parseProgram tokens of let finalEnv = evalTricu Map.empty asts
Right ((SModule name) : _) -> name case Map.lookup "__result" finalEnv of
_ -> "" Just finalResult -> return finalResult
case parseProgram tokens of Nothing -> errorWithoutStackTrace "No expressions to evaluate found"
Left err -> errorWithoutStackTrace (handleParseError err)
Right _ -> do
ast <- preprocessFile filePath
let finalEnv = mainAlias moduleName $ evalTricu Map.empty ast
case Map.lookup "main" finalEnv of
Just finalResult -> return finalResult
Nothing -> errorWithoutStackTrace "No `main` function detected"
evaluateFile :: FilePath -> IO Env evaluateFile :: FilePath -> IO Env
evaluateFile filePath = do evaluateFile filePath = do
contents <- readFile filePath contents <- readFile filePath
let tokens = lexTricu contents let asts = parseTricu contents
let moduleName = case parseProgram tokens of pure $ evalTricu Map.empty asts
Right ((SModule name) : _) -> name
_ -> ""
case parseProgram tokens of
Left err -> errorWithoutStackTrace (handleParseError err)
Right _ -> do
ast <- preprocessFile filePath
pure $ mainAlias moduleName $ evalTricu Map.empty ast
evaluateFileWithContext :: Env -> FilePath -> IO Env evaluateFileWithContext :: Env -> FilePath -> IO Env
evaluateFileWithContext env filePath = do evaluateFileWithContext env filePath = do
contents <- readFile filePath contents <- readFile filePath
let tokens = lexTricu contents let asts = parseTricu contents
let moduleName = case parseProgram tokens of pure $ evalTricu env asts
Right ((SModule name) : _) -> name
_ -> ""
case parseProgram tokens of
Left err -> errorWithoutStackTrace (handleParseError err)
Right _ -> do
ast <- preprocessFile filePath
pure $ mainAlias moduleName $ evalTricu env ast
mainAlias :: String -> Env -> Env
mainAlias "" env = env
mainAlias moduleName env =
case Map.lookup (moduleName ++ ".main") env of
Just value -> Map.insert "main" value env
Nothing -> env
preprocessFile :: FilePath -> IO [TricuAST]
preprocessFile filePath = preprocessFile' Set.empty filePath
preprocessFile' :: Set.Set FilePath -> FilePath -> IO [TricuAST]
preprocessFile' inProgress filePath
| filePath `Set.member` inProgress =
errorWithoutStackTrace $ "Encountered cyclic import: " ++ filePath
| otherwise = do
contents <- readFile filePath
let tokens = lexTricu contents
case parseProgram tokens of
Left err -> errorWithoutStackTrace (handleParseError err)
Right asts -> do
let (moduleName, restAST) = extractModule asts
let (imports, nonImports) = partition isImport restAST
let newInProgress = Set.insert filePath inProgress
importedASTs <- concat <$> mapM (processImport newInProgress) imports
let namespacedAST = namespaceDefinitions moduleName nonImports
pure $ importedASTs ++ namespacedAST
where
extractModule :: [TricuAST] -> (String, [TricuAST])
extractModule ((SModule name) : xs) = (name, xs)
extractModule xs = ("", xs)
isImport :: TricuAST -> Bool
isImport (SImport _ _) = True
isImport _ = False
processImport :: Set.Set FilePath -> TricuAST -> IO [TricuAST]
processImport inProgress (SImport filePath moduleName) = do
importedAST <- preprocessFile' inProgress filePath
pure $ namespaceDefinitions moduleName importedAST
processImport _ _ = error "Unexpected non-import in processImport"
namespaceDefinitions :: String -> [TricuAST] -> [TricuAST]
namespaceDefinitions moduleName = map (namespaceDefinition moduleName)
namespaceDefinition :: String -> TricuAST -> TricuAST
namespaceDefinition "" def = def
namespaceDefinition moduleName (SDef name args body)
| isPrefixed name = SDef name args (namespaceBody moduleName body)
| otherwise = SDef (namespaceVariable moduleName name)
args (namespaceBody moduleName body)
namespaceDefinition moduleName other =
namespaceBody moduleName other
namespaceBody :: String -> TricuAST -> TricuAST
namespaceBody moduleName (SVar name)
| isPrefixed name = SVar name
| otherwise = SVar (namespaceVariable moduleName name)
namespaceBody moduleName (SApp func arg) =
SApp (namespaceBody moduleName func) (namespaceBody moduleName arg)
namespaceBody moduleName (SLambda args body) =
SLambda args (namespaceBodyScoped moduleName args body)
namespaceBody moduleName (SList items) =
SList (map (namespaceBody moduleName) items)
namespaceBody moduleName (TFork left right) =
TFork (namespaceBody moduleName left) (namespaceBody moduleName right)
namespaceBody moduleName (TStem subtree) =
TStem (namespaceBody moduleName subtree)
namespaceBody moduleName (SDef name args body)
| isPrefixed name = SDef name args (namespaceBody moduleName body)
| otherwise = SDef (namespaceVariable moduleName name)
args (namespaceBody moduleName body)
namespaceBody _ other = other
namespaceBodyScoped :: String -> [String] -> TricuAST -> TricuAST
namespaceBodyScoped moduleName args body = case body of
SVar name ->
if name `elem` args
then SVar name
else namespaceBody moduleName (SVar name)
SApp func arg -> SApp (namespaceBodyScoped moduleName args func) (namespaceBodyScoped moduleName args arg)
SLambda innerArgs innerBody -> SLambda innerArgs (namespaceBodyScoped moduleName (args ++ innerArgs) innerBody)
SList items -> SList (map (namespaceBodyScoped moduleName args) items)
TFork left right -> TFork (namespaceBodyScoped moduleName args left) (namespaceBodyScoped moduleName args right)
TStem subtree -> TStem (namespaceBodyScoped moduleName args subtree)
SDef name innerArgs innerBody ->
SDef (namespaceVariable moduleName name) innerArgs (namespaceBodyScoped moduleName (args ++ innerArgs) innerBody)
other -> other
isPrefixed :: String -> Bool
isPrefixed name = '.' `elem` name
namespaceVariable :: String -> String -> String
namespaceVariable "" name = name
namespaceVariable moduleName name = moduleName ++ "." ++ name

View File

@ -20,11 +20,11 @@ identifier = do
first <- letterChar <|> char '_' first <- letterChar <|> char '_'
rest <- many $ letterChar rest <- many $ letterChar
<|> digitChar <|> digitChar
<|> char '_' <|> char '-' <|> char '?' <|> char '.' <|> char '_' <|> char '-' <|> char '?' <|> char '!'
<|> char '$' <|> char '#' <|> char '@' <|> char '%' <|> char '$' <|> char '#' <|> char '@' <|> char '%'
let name = first : rest let name = first : rest
if (name == "t" || name == "!result") if (name == "t" || name == "__result")
then fail "Keywords (`t`, `!result`) cannot be used as an identifier" then fail "Keywords (`t`, `__result`) cannot be used as an identifier"
else return (LIdentifier name) else return (LIdentifier name)
integerLiteral :: Lexer LToken integerLiteral :: Lexer LToken
@ -39,22 +39,6 @@ stringLiteral = do
char '"' --" char '"' --"
return (LStringLiteral content) return (LStringLiteral content)
lModule :: Lexer LToken
lModule = do
_ <- string "!module"
space1
LIdentifier moduleName <- identifier
return (LModule moduleName)
lImport :: Lexer LToken
lImport = do
_ <- string "!import"
space1
LStringLiteral path <- stringLiteral
space1
LIdentifier name <- identifier
return (LImport path name)
assign :: Lexer LToken assign :: Lexer LToken
assign = char '=' *> pure LAssign assign = char '=' *> pure LAssign
@ -88,36 +72,28 @@ sc = space
tricuLexer :: Lexer [LToken] tricuLexer :: Lexer [LToken]
tricuLexer = do tricuLexer = do
sc sc
header <- many $ do
tok <- choice
[ try lModule
, try lImport
, lnewline
]
sc
pure tok
tokens <- many $ do tokens <- many $ do
tok <- choice tricuLexer' tok <- choice tricuLexer'
sc sc
pure tok pure tok
sc sc
eof eof
pure (header ++ tokens) pure tokens
where where
tricuLexer' = tricuLexer' =
[ try lnewline [ try lnewline
, try identifier , try identifier
, try keywordT , try keywordT
, try integerLiteral , try integerLiteral
, try stringLiteral , try stringLiteral
, assign , assign
, colon , colon
, backslash , backslash
, openParen , openParen
, closeParen , closeParen
, openBracket , openBracket
, closeBracket , closeBracket
] ]
lexTricu :: String -> [LToken] lexTricu :: String -> [LToken]
lexTricu input = case runParser tricuLexer "" input of lexTricu input = case runParser tricuLexer "" input of

View File

@ -1,6 +1,6 @@
module Main where module Main where
import Eval (evalTricu, mainResult, result) import Eval (evalTricu, result)
import FileEval import FileEval
import Parser (parseTricu) import Parser (parseTricu)
import REPL import REPL
@ -16,7 +16,7 @@ import qualified Data.Map as Map
data TricuArgs data TricuArgs
= Repl = Repl
| Evaluate { file :: [FilePath], form :: EvaluatedForm } | Evaluate { file :: [FilePath], form :: EvaluatedForm }
| TDecode { file :: [FilePath] } | Decode { file :: [FilePath] }
deriving (Show, Data, Typeable) deriving (Show, Data, Typeable)
replMode :: TricuArgs replMode :: TricuArgs
@ -31,7 +31,7 @@ evaluateMode = Evaluate
\ Defaults to stdin." \ Defaults to stdin."
&= name "f" &= typ "FILE" &= name "f" &= typ "FILE"
, form = TreeCalculus &= typ "FORM" , form = TreeCalculus &= typ "FORM"
&= help "Optional output form: (tree|fsl|ast|ternary|ascii|decode).\n \ &= help "Optional output form: (tree|fsl|ast|ternary|ascii).\n \
\ Defaults to tricu-compatible `t` tree form." \ Defaults to tricu-compatible `t` tree form."
&= name "t" &= name "t"
} }
@ -40,7 +40,7 @@ evaluateMode = Evaluate
&= name "eval" &= name "eval"
decodeMode :: TricuArgs decodeMode :: TricuArgs
decodeMode = TDecode decodeMode = Decode
{ file = def { file = def
&= help "Optional input file path to attempt decoding.\n \ &= help "Optional input file path to attempt decoding.\n \
\ Defaults to stdin." \ Defaults to stdin."
@ -60,7 +60,8 @@ main = do
Repl -> do Repl -> do
putStrLn "Welcome to the tricu REPL" putStrLn "Welcome to the tricu REPL"
putStrLn "You can exit with `CTRL+D` or the `:_exit` command.`" putStrLn "You can exit with `CTRL+D` or the `:_exit` command.`"
repl Map.empty library <- liftIO $ evaluateFile "./lib/base.tri"
repl $ Map.delete "__result" library
Evaluate { file = filePaths, form = form } -> do Evaluate { file = filePaths, form = form } -> do
result <- case filePaths of result <- case filePaths of
[] -> do [] -> do
@ -69,14 +70,15 @@ main = do
(filePath:restFilePaths) -> do (filePath:restFilePaths) -> do
initialEnv <- evaluateFile filePath initialEnv <- evaluateFile filePath
finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths
pure $ mainResult finalEnv pure $ result finalEnv
let fRes = formatResult form result let fRes = formatResult form result
putStr fRes putStr fRes
TDecode { file = filePaths } -> do Decode { file = filePaths } -> do
value <- case filePaths of value <- case filePaths of
[] -> getContents [] -> getContents
(filePath:_) -> readFile filePath (filePath:_) -> readFile filePath
putStrLn $ decodeResult $ result $ evalTricu Map.empty $ parseTricu value library <- liftIO $ evaluateFile "./lib/base.tri"
putStrLn $ decodeResult $ result $ evalTricu library $ parseTricu value
runTricu :: String -> T runTricu :: String -> T
runTricu input = runTricu input =

View File

@ -74,33 +74,9 @@ parseSingle input =
parseProgramM :: ParserM [TricuAST] parseProgramM :: ParserM [TricuAST]
parseProgramM = do parseProgramM = do
skipMany topLevelNewline skipMany topLevelNewline
moduleNode <- optional parseModuleM
skipMany topLevelNewline
importNodes <- many (do
node <- parseImportM
skipMany topLevelNewline
return node)
skipMany topLevelNewline
exprs <- sepEndBy parseOneExpression (some topLevelNewline) exprs <- sepEndBy parseOneExpression (some topLevelNewline)
skipMany topLevelNewline skipMany topLevelNewline
return (maybe [] (: []) moduleNode ++ importNodes ++ exprs) return exprs
parseModuleM :: ParserM TricuAST
parseModuleM = do
LModule moduleName <- satisfyM isModule
pure (SModule moduleName)
where
isModule (LModule _) = True
isModule _ = False
parseImportM :: ParserM TricuAST
parseImportM = do
LImport filePath moduleName <- satisfyM isImport
pure (SImport filePath moduleName)
where
isImport (LImport _ _) = True
isImport _ = False
parseOneExpression :: ParserM TricuAST parseOneExpression :: ParserM TricuAST
parseOneExpression = scnParserM *> parseExpressionM parseOneExpression = scnParserM *> parseExpressionM
@ -109,10 +85,13 @@ scnParserM :: ParserM ()
scnParserM = skipMany $ do scnParserM = skipMany $ do
t <- lookAhead anySingle t <- lookAhead anySingle
st <- get st <- get
if | (parenDepth st > 0 || bracketDepth st > 0) && (t == LNewline) -> if | (parenDepth st > 0 || bracketDepth st > 0) && case t of
void $ satisfyM (== LNewline) LNewline -> True
| otherwise -> _ -> False -> void $ satisfyM $ \case
fail "In nested context or no space token" <|> empty LNewline -> True
_ -> False
| otherwise -> fail "In nested context or no space token" <|> empty
eofM :: ParserM () eofM :: ParserM ()
eofM = lift eof eofM = lift eof
@ -130,23 +109,32 @@ parseExpressionM = choice
parseFunctionM :: ParserM TricuAST parseFunctionM :: ParserM TricuAST
parseFunctionM = do parseFunctionM = do
let ident = (\case LIdentifier _ -> True; _ -> False) LIdentifier name <- satisfyM $ \case
LIdentifier name <- satisfyM ident LIdentifier _ -> True
args <- many $ satisfyM ident _ -> False
args <- many $ satisfyM $ \case
LIdentifier _ -> True
_ -> False
_ <- satisfyM (== LAssign) _ <- satisfyM (== LAssign)
scnParserM scnParserM
body <- parseExpressionM body <- parseExpressionM
pure (SDef name (map getIdentifier args) body) pure (SFunc name (map getIdentifier args) body)
parseLambdaM :: ParserM TricuAST parseLambdaM :: ParserM TricuAST
parseLambdaM = do parseLambdaM =
let ident = (\case LIdentifier _ -> True; _ -> False) between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) $ do
_ <- satisfyM (== LBackslash) _ <- satisfyM (== LBackslash)
params <- some (satisfyM ident) param <- satisfyM $ \case
_ <- satisfyM (== LColon) LIdentifier _ -> True
scnParserM _ -> False
body <- parseLambdaExpressionM rest <- many $ satisfyM $ \case
pure $ foldr (\param acc -> SLambda [getIdentifier param] acc) body params LIdentifier _ -> True
_ -> False
_ <- satisfyM (== LColon)
scnParserM
body <- parseLambdaExpressionM
let nested = foldr (\v acc -> SLambda [getIdentifier v] acc) body rest
pure (SLambda [getIdentifier param] nested)
parseLambdaExpressionM :: ParserM TricuAST parseLambdaExpressionM :: ParserM TricuAST
parseLambdaExpressionM = choice parseLambdaExpressionM = choice
@ -192,8 +180,9 @@ parseAtomicBaseM = choice
parseTreeLeafM :: ParserM TricuAST parseTreeLeafM :: ParserM TricuAST
parseTreeLeafM = do parseTreeLeafM = do
let keyword = (\case LKeywordT -> True; _ -> False) _ <- satisfyM $ \case
_ <- satisfyM keyword LKeywordT -> True
_ -> False
notFollowedBy $ lift $ satisfy (== LAssign) notFollowedBy $ lift $ satisfy (== LAssign)
pure TLeaf pure TLeaf
@ -259,38 +248,37 @@ parseGroupedItemM = do
parseSingleItemM :: ParserM TricuAST parseSingleItemM :: ParserM TricuAST
parseSingleItemM = do parseSingleItemM = do
token <- satisfyM (\case LIdentifier _ -> True; LKeywordT -> True; _ -> False) token <- satisfyM $ \case
if | LIdentifier name <- token -> pure (SVar name) LIdentifier _ -> True
| token == LKeywordT -> pure TLeaf LKeywordT -> True
| otherwise -> fail "Unexpected token in list item" _ -> False
case token of
LIdentifier name -> pure (SVar name)
LKeywordT -> pure TLeaf
_ -> fail "Unexpected token in list item"
parseVarM :: ParserM TricuAST parseVarM :: ParserM TricuAST
parseVarM = do parseVarM = do
satisfyM (\case LIdentifier _ -> True; _ -> False) >>= \case LIdentifier name <- satisfyM $ \case
LIdentifier name LIdentifier _ -> True
| name == "t" || name == "!result" -> _ -> False
fail ("Reserved keyword: " ++ name ++ " cannot be assigned.") if name == "t" || name == "__result"
| otherwise -> then fail ("Reserved keyword: " ++ name ++ " cannot be assigned.")
pure (SVar name) else pure (SVar name)
_ -> fail "Unexpected token while parsing variable"
parseIntLiteralM :: ParserM TricuAST parseIntLiteralM :: ParserM TricuAST
parseIntLiteralM = do parseIntLiteralM = do
let intL = (\case LIntegerLiteral _ -> True; _ -> False) LIntegerLiteral value <- satisfyM $ \case
token <- satisfyM intL LIntegerLiteral _ -> True
if | LIntegerLiteral value <- token -> _ -> False
pure (SInt value) pure (SInt value)
| otherwise ->
fail "Unexpected token while parsing integer literal"
parseStrLiteralM :: ParserM TricuAST parseStrLiteralM :: ParserM TricuAST
parseStrLiteralM = do parseStrLiteralM = do
let strL = (\case LStringLiteral _ -> True; _ -> False) LStringLiteral value <- satisfyM $ \case
token <- satisfyM strL LStringLiteral _ -> True
if | LStringLiteral value <- token -> _ -> False
pure (SStr value) pure (SStr value)
| otherwise ->
fail "Unexpected token while parsing string literal"
getIdentifier :: LToken -> String getIdentifier :: LToken -> String
getIdentifier (LIdentifier name) = name getIdentifier (LIdentifier name) = name

View File

@ -26,7 +26,7 @@ repl env = runInputT defaultSettings (loop env)
| Just s <- minput, strip s == "" -> do | Just s <- minput, strip s == "" -> do
outputStrLn "" outputStrLn ""
loop env loop env
| Just s <- minput, strip s == "!import" -> do | Just s <- minput, strip s == "!load" -> do
path <- getInputLine "File path to load < " path <- getInputLine "File path to load < "
if if
| Nothing <- path -> do | Nothing <- path -> do
@ -34,7 +34,7 @@ repl env = runInputT defaultSettings (loop env)
loop env loop env
| Just p <- path -> do | Just p <- path -> do
loadedEnv <- liftIO $ evaluateFileWithContext env (strip p) `catch` \e -> errorHandler env e loadedEnv <- liftIO $ evaluateFileWithContext env (strip p) `catch` \e -> errorHandler env e
loop $ Map.delete "!result" (Map.union loadedEnv env) loop $ Map.delete "__result" (Map.union loadedEnv env)
| Just s <- minput -> do | Just s <- minput -> do
if if
| take 2 s == "--" -> loop env | take 2 s == "--" -> loop env
@ -47,7 +47,7 @@ repl env = runInputT defaultSettings (loop env)
let asts = parseTricu input let asts = parseTricu input
newEnv = evalTricu env asts newEnv = evalTricu env asts
if if
| Just r <- Map.lookup "!result" newEnv -> do | Just r <- Map.lookup "__result" newEnv -> do
putStrLn $ "tricu > " ++ decodeResult r putStrLn $ "tricu > " ++ decodeResult r
| otherwise -> return () | otherwise -> return ()
return newEnv return newEnv
@ -59,3 +59,10 @@ repl env = runInputT defaultSettings (loop env)
strip :: String -> String strip :: String -> String
strip = dropWhileEnd isSpace . dropWhile isSpace strip = dropWhileEnd isSpace . dropWhile isSpace
decodeResult :: T -> String
decodeResult tc
| Right num <- toNumber tc = show num
| Right str <- toString tc = "\"" ++ str ++ "\""
| Right list <- toList tc = "[" ++ intercalate ", " (map decodeResult list) ++ "]"
| otherwise = formatResult TreeCalculus tc

View File

@ -19,15 +19,13 @@ data TricuAST
| SInt Int | SInt Int
| SStr String | SStr String
| SList [TricuAST] | SList [TricuAST]
| SDef String [String] TricuAST | SFunc String [String] TricuAST
| SApp TricuAST TricuAST | SApp TricuAST TricuAST
| TLeaf | TLeaf
| TStem TricuAST | TStem TricuAST
| TFork TricuAST TricuAST | TFork TricuAST TricuAST
| SLambda [String] TricuAST | SLambda [String] TricuAST
| SEmpty | SEmpty
| SModule String
| SImport String String
deriving (Show, Eq, Ord) deriving (Show, Eq, Ord)
-- Lexer Tokens -- Lexer Tokens
@ -44,12 +42,10 @@ data LToken
| LOpenBracket | LOpenBracket
| LCloseBracket | LCloseBracket
| LNewline | LNewline
| LModule String
| LImport String String
deriving (Show, Eq, Ord) deriving (Show, Eq, Ord)
-- Output formats -- Output formats
data EvaluatedForm = TreeCalculus | FSL | AST | Ternary | Ascii | Decode data EvaluatedForm = TreeCalculus | FSL | AST | Ternary | Ascii
deriving (Show, Data, Typeable) deriving (Show, Data, Typeable)
-- Environment containing previously evaluated TC terms -- Environment containing previously evaluated TC terms
@ -119,7 +115,6 @@ formatResult FSL = show
formatResult AST = show . toAST formatResult AST = show . toAST
formatResult Ternary = toTernaryString formatResult Ternary = toTernaryString
formatResult Ascii = toAscii formatResult Ascii = toAscii
formatResult Decode = decodeResult
toSimpleT :: String -> String toSimpleT :: String -> String
toSimpleT s = T.unpack toSimpleT s = T.unpack
@ -152,9 +147,4 @@ toAscii tree = go tree "" True
++ go left (prefix ++ (if isLast then " " else "| ")) False ++ go left (prefix ++ (if isLast then " " else "| ")) False
++ go right (prefix ++ (if isLast then " " else "| ")) True ++ go right (prefix ++ (if isLast then " " else "| ")) True
decodeResult :: T -> String -- Utility
decodeResult tc
| Right num <- toNumber tc = show num
| Right str <- toString tc = "\"" ++ str ++ "\""
| Right list <- toList tc = "[" ++ intercalate ", " (map decodeResult list) ++ "]"
| otherwise = formatResult TreeCalculus tc

View File

@ -7,13 +7,12 @@ import Parser
import REPL import REPL
import Research import Research
import Control.Exception (evaluate, try, SomeException) import Control.Exception (evaluate, try, SomeException)
import Control.Monad.IO.Class (liftIO) import Control.Monad.IO.Class (liftIO)
import Data.List (isInfixOf)
import Test.Tasty import Test.Tasty
import Test.Tasty.HUnit import Test.Tasty.HUnit
import Test.Tasty.QuickCheck import Test.Tasty.QuickCheck
import Text.Megaparsec (runParser) import Text.Megaparsec (runParser)
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Set as Set import qualified Data.Set as Set
@ -26,217 +25,180 @@ runTricu s = show $ result (evalTricu Map.empty $ parseTricu s)
tests :: TestTree tests :: TestTree
tests = testGroup "Tricu Tests" tests = testGroup "Tricu Tests"
[ lexer [ lexerTests
, parser , parserTests
, simpleEvaluation , evaluationTests
, lambdas , lambdaEvalTests
, baseLibrary , libraryTests
, fileEval , fileEvaluationTests
, modules
, demos
] ]
lexer :: TestTree lexerTests :: TestTree
lexer = testGroup "Lexer Tests" lexerTests = testGroup "Lexer Tests"
[ testCase "Lex simple identifiers" $ do [ testCase "Lex simple identifiers" $ do
let input = "x a b = a" let input = "x a b = a"
expect = Right [LIdentifier "x", LIdentifier "a", LIdentifier "b", LAssign, LIdentifier "a"] expect = Right [LIdentifier "x", LIdentifier "a", LIdentifier "b", LAssign, LIdentifier "a"]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex Tree Calculus terms" $ do , testCase "Lex Tree Calculus terms" $ do
let input = "t t t" let input = "t t t"
expect = Right [LKeywordT, LKeywordT, LKeywordT] expect = Right [LKeywordT, LKeywordT, LKeywordT]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex escaped characters in strings" $ do , testCase "Lex escaped characters in strings" $ do
let input = "\"hello\\nworld\"" let input = "\"hello\\nworld\""
expect = Right [LStringLiteral "hello\\nworld"] expect = Right [LStringLiteral "hello\\nworld"]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex mixed literals" $ do , testCase "Lex mixed literals" $ do
let input = "t \"string\" 42" let input = "t \"string\" 42"
expect = Right [LKeywordT, LStringLiteral "string", LIntegerLiteral 42] expect = Right [LKeywordT, LStringLiteral "string", LIntegerLiteral 42]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex invalid token" $ do , testCase "Lex invalid token" $ do
let input = "&invalid" let input = "&invalid"
case runParser tricuLexer "" input of case runParser tricuLexer "" input of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected lexer to fail on invalid token" Right _ -> assertFailure "Expected lexer to fail on invalid token"
, testCase "Drop trailing whitespace in definitions" $ do , testCase "Drop trailing whitespace in definitions" $ do
let input = "x = 5 " let input = "x = 5 "
expect = [LIdentifier "x",LAssign,LIntegerLiteral 5] expect = [LIdentifier "x",LAssign,LIntegerLiteral 5]
case (runParser tricuLexer "" input) of case (runParser tricuLexer "" input) of
Left _ -> assertFailure "Failed to lex input" Left _ -> assertFailure "Failed to lex input"
Right i -> i @?= expect Right i -> i @?= expect
, testCase "Error when using invalid characters in identifiers" $ do , testCase "Error when using invalid characters in identifiers" $ do
case (runParser tricuLexer "" "!result = 5") of case (runParser tricuLexer "" "__result = 5") of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of !result" Right _ -> assertFailure "Expected failure when trying to assign the value of __result"
] ]
parser :: TestTree parserTests :: TestTree
parser = testGroup "Parser Tests" parserTests = testGroup "Parser Tests"
[ testCase "Error when assigning a value to T" $ do [ testCase "Error when assigning a value to T" $ do
let tokens = lexTricu "t = x" let tokens = lexTricu "t = x"
case parseSingleExpr tokens of case parseSingleExpr tokens of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of T" Right _ -> assertFailure "Expected failure when trying to assign the value of T"
, testCase "Parse function definitions" $ do , testCase "Parse function definitions" $ do
let input = "x = (\\a b c : a)" let input = "x = (\\a b c : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a")))) expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested Tree Calculus terms" $ do , testCase "Parse nested Tree Calculus terms" $ do
let input = "t (t t) t" let input = "t (t t) t"
expect = SApp (SApp TLeaf (SApp TLeaf TLeaf)) TLeaf expect = SApp (SApp TLeaf (SApp TLeaf TLeaf)) TLeaf
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse sequential Tree Calculus terms" $ do , testCase "Parse sequential Tree Calculus terms" $ do
let input = "t t t" let input = "t t t"
expect = SApp (SApp TLeaf TLeaf) TLeaf expect = SApp (SApp TLeaf TLeaf) TLeaf
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse mixed list literals" $ do , testCase "Parse mixed list literals" $ do
let input = "[t (\"hello\") t]" let input = "[t (\"hello\") t]"
expect = SList [TLeaf, SStr "hello", TLeaf] expect = SList [TLeaf, SStr "hello", TLeaf]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse function with applications" $ do , testCase "Parse function with applications" $ do
let input = "f = (\\x : t x)" let input = "f = (\\x : t x)"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x"))) expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested lists" $ do , testCase "Parse nested lists" $ do
let input = "[t [(t t)]]" let input = "[t [(t t)]]"
expect = SList [TLeaf,SList [SApp TLeaf TLeaf]] expect = SList [TLeaf,SList [SApp TLeaf TLeaf]]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse complex parentheses" $ do , testCase "Parse complex parentheses" $ do
let input = "t (t t (t t))" let input = "t (t t (t t))"
expect = SApp TLeaf (SApp (SApp TLeaf TLeaf) (SApp TLeaf TLeaf)) expect = SApp TLeaf (SApp (SApp TLeaf TLeaf) (SApp TLeaf TLeaf))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse empty list" $ do , testCase "Parse empty list" $ do
let input = "[]" let input = "[]"
expect = SList [] expect = SList []
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse multiple nested lists" $ do , testCase "Parse multiple nested lists" $ do
let input = "[[t t] [t (t t)]]" let input = "[[t t] [t (t t)]]"
expect = SList [SList [TLeaf,TLeaf],SList [TLeaf,SApp TLeaf TLeaf]] expect = SList [SList [TLeaf,TLeaf],SList [TLeaf,SApp TLeaf TLeaf]]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse whitespace variance" $ do , testCase "Parse whitespace variance" $ do
let input1 = "[t t]" let input1 = "[t t]"
let input2 = "[ t t ]" let input2 = "[ t t ]"
expect = SList [TLeaf, TLeaf] expect = SList [TLeaf, TLeaf]
parseSingle input1 @?= expect parseSingle input1 @?= expect
parseSingle input2 @?= expect parseSingle input2 @?= expect
, testCase "Parse string in list" $ do , testCase "Parse string in list" $ do
let input = "[(\"hello\")]" let input = "[(\"hello\")]"
expect = SList [SStr "hello"] expect = SList [SStr "hello"]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse parentheses inside list" $ do , testCase "Parse parentheses inside list" $ do
let input = "[t (t t)]" let input = "[t (t t)]"
expect = SList [TLeaf,SApp TLeaf TLeaf] expect = SList [TLeaf,SApp TLeaf TLeaf]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested parentheses in function body" $ do , testCase "Parse nested parentheses in function body" $ do
let input = "f = (\\x : t (t (t t)))" let input = "f = (\\x : t (t (t t)))"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf)))) expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse lambda abstractions" $ do , testCase "Parse lambda abstractions" $ do
let input = "(\\a : a)" let input = "(\\a : a)"
expect = (SLambda ["a"] (SVar "a")) expect = (SLambda ["a"] (SVar "a"))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse multiple arguments to lambda abstractions" $ do , testCase "Parse multiple arguments to lambda abstractions" $ do
let input = "x = (\\a b : a)" let input = "x = (\\a b : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a"))) expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Grouping T terms with parentheses in function application" $ do , testCase "Grouping T terms with parentheses in function application" $ do
let input = "x = (\\a : a)\nx (t)" let input = "x = (\\a : a)\nx (t)"
expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf] expect = [SFunc "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
parseTricu input @?= expect parseTricu input @?= expect
, testCase "Comments 1" $ do , testCase "Comments 1" $ do
let input = "(t) (t) -- (t)" let input = "(t) (t) -- (t)"
expect = [SApp TLeaf TLeaf] expect = [SApp TLeaf TLeaf]
parseTricu input @?= expect parseTricu input @?= expect
, testCase "Comments 2" $ do , testCase "Comments 2" $ do
let input = "(t) -- (t) -- (t)" let input = "(t) -- (t) -- (t)"
expect = [TLeaf] expect = [TLeaf]
parseTricu input @?= expect parseTricu input @?= expect
] ]
simpleEvaluation :: TestTree evaluationTests :: TestTree
simpleEvaluation = testGroup "Evaluation Tests" evaluationTests = testGroup "Evaluation Tests"
[ testCase "Evaluate single Leaf" $ do [ testCase "Evaluate single Leaf" $ do
let input = "t" let input = "t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Leaf (result $ evalSingle Map.empty ast) @?= Leaf
, testCase "Evaluate single Stem" $ do , testCase "Evaluate single Stem" $ do
let input = "t t" let input = "t t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Stem Leaf (result $ evalSingle Map.empty ast) @?= Stem Leaf
, testCase "Evaluate single Fork" $ do , testCase "Evaluate single Fork" $ do
let input = "t t t" let input = "t t t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Fork Leaf Leaf (result $ evalSingle Map.empty ast) @?= Fork Leaf Leaf
, testCase "Evaluate nested Fork and Stem" $ do , testCase "Evaluate nested Fork and Stem" $ do
let input = "t (t t) t" let input = "t (t t) t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Fork (Stem Leaf) Leaf (result $ evalSingle Map.empty ast) @?= Fork (Stem Leaf) Leaf
, testCase "Evaluate `not` function" $ do , testCase "Evaluate `not` function" $ do
let input = "t (t (t t) (t t t)) t" let input = "t (t (t t) (t t t)) t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= (result $ evalSingle Map.empty ast) @?=
Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
, testCase "Environment updates with definitions" $ do , testCase "Environment updates with definitions" $ do
let input = "x = t\ny = x" let input = "x = t\ny = x"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
Map.lookup "x" env @?= Just Leaf Map.lookup "x" env @?= Just Leaf
Map.lookup "y" env @?= Just Leaf Map.lookup "y" env @?= Just Leaf
, testCase "Variable substitution" $ do , testCase "Variable substitution" $ do
let input = "x = t t\ny = t x\ny" let input = "x = t t\ny = t x\ny"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
(result env) @?= Stem (Stem Leaf) (result env) @?= Stem (Stem Leaf)
, testCase "Multiline input evaluation" $ do , testCase "Multiline input evaluation" $ do
let input = "x = t\ny = t t\nx" let input = "x = t\ny = t t\nx"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
(result env) @?= Leaf (result env) @?= Leaf
, testCase "Evaluate string literal" $ do , testCase "Evaluate string literal" $ do
let input = "\"hello\"" let input = "\"hello\""
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofString "hello" (result $ evalSingle Map.empty ast) @?= ofString "hello"
, testCase "Evaluate list literal" $ do , testCase "Evaluate list literal" $ do
let input = "[t (t t)]" let input = "[t (t t)]"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofList [Leaf, Stem Leaf] (result $ evalSingle Map.empty ast) @?= ofList [Leaf, Stem Leaf]
, testCase "Evaluate empty list" $ do , testCase "Evaluate empty list" $ do
let input = "[]" let input = "[]"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofList [] (result $ evalSingle Map.empty ast) @?= ofList []
, testCase "Evaluate variable dependency chain" $ do , testCase "Evaluate variable dependency chain" $ do
let input = "x = t (t t)\n \ let input = "x = t (t t)\n \
\ y = x\n \ \ y = x\n \
@ -245,17 +207,10 @@ simpleEvaluation = testGroup "Evaluation Tests"
\ variablewithamuchlongername" \ variablewithamuchlongername"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
(result env) @?= (Stem (Stem Leaf)) (result env) @?= (Stem (Stem Leaf))
, testCase "Evaluate variable shadowing" $ do
, testCase "Immutable definitions" $ do
let input = "x = t t\nx = t\nx" let input = "x = t t\nx = t\nx"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
result <- try (evaluate (runTricu input)) :: IO (Either SomeException String) (result env) @?= Leaf
case result of
Left _ -> return ()
Right _ -> assertFailure "Expected evaluation error"
, testCase "Apply identity to Boolean Not" $ do , testCase "Apply identity to Boolean Not" $ do
let not = "(t (t (t t) (t t t)) t)" let not = "(t (t (t t) (t t t)) t)"
let input = "x = (\\a : a)\nx " ++ not let input = "x = (\\a : a)\nx " ++ not
@ -263,215 +218,174 @@ simpleEvaluation = testGroup "Evaluation Tests"
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
] ]
lambdas :: TestTree lambdaEvalTests :: TestTree
lambdas = testGroup "Lambda Evaluation Tests" lambdaEvalTests = testGroup "Lambda Evaluation Tests"
[ testCase "Lambda Identity Function" $ do [ testCase "Lambda Identity Function" $ do
let input = "id = (\\x : x)\nid t" let input = "id = (\\x : x)\nid t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda Constant Function (K combinator)" $ do , testCase "Lambda Constant Function (K combinator)" $ do
let input = "k = (\\x y : x)\nk t (t t)" let input = "k = (\\x y : x)\nk t (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda Application with Variable" $ do , testCase "Lambda Application with Variable" $ do
let input = "id = (\\x : x)\nval = t t\nid val" let input = "id = (\\x : x)\nval = t t\nid val"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda Application with Multiple Arguments" $ do , testCase "Lambda Application with Multiple Arguments" $ do
let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)" let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Nested Lambda Application" $ do , testCase "Nested Lambda Application" $ do
let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t" let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with a complex body" $ do , testCase "Lambda with a complex body" $ do
let input = "f = (\\x : t (t x))\nf t" let input = "f = (\\x : t (t x))\nf t"
runTricu input @?= "Stem (Stem Leaf)" runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda returning a function" $ do , testCase "Lambda returning a function" $ do
let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)" let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with Shadowing" $ do , testCase "Lambda with Shadowing" $ do
let input = "f = (\\x : (\\x : x))\nf t (t t)" let input = "f = (\\x : (\\x : x))\nf t (t t)"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda returning another lambda" $ do , testCase "Lambda returning another lambda" $ do
let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)" let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with free variables" $ do , testCase "Lambda with free variables" $ do
let input = "y = t t\nf = (\\x : y)\nf t" let input = "y = t t\nf = (\\x : y)\nf t"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "SKI Composition" $ do , testCase "SKI Composition" $ do
let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)" let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)"
runTricu input @?= "Stem (Stem Leaf)" runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda with multiple parameters and application" $ do , testCase "Lambda with multiple parameters and application" $ do
let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)" let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda with nested application in the body" $ do , testCase "Lambda with nested application in the body" $ do
let input = "f = (\\x : t (t (t x)))\nf t" let input = "f = (\\x : t (t (t x)))\nf t"
runTricu input @?= "Stem (Stem (Stem Leaf))" runTricu input @?= "Stem (Stem (Stem Leaf))"
, testCase "Lambda returning a function and applying it" $ do , testCase "Lambda returning a function and applying it" $ do
let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)" let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)"
runTricu input @?= "Fork Leaf (Stem Leaf)" runTricu input @?= "Fork Leaf (Stem Leaf)"
, testCase "Lambda applying a variable" $ do , testCase "Lambda applying a variable" $ do
let input = "id = (\\x : x)\na = t t\nid a" let input = "id = (\\x : x)\na = t t\nid a"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Nested lambda abstractions in the same expression" $ do , testCase "Nested lambda abstractions in the same expression" $ do
let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t" let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with a string literal" $ do , testCase "Lambda with a string literal" $ do
let input = "f = (\\x : x)\nf \"hello\"" let input = "f = (\\x : x)\nf \"hello\""
runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))" runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
, testCase "Lambda with an integer literal" $ do , testCase "Lambda with an integer literal" $ do
let input = "f = (\\x : x)\nf 42" let input = "f = (\\x : x)\nf 42"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))" runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
, testCase "Lambda with a list literal" $ do , testCase "Lambda with a list literal" $ do
let input = "f = (\\x : x)\nf [t (t t)]" let input = "f = (\\x : x)\nf [t (t t)]"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)" runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
] ]
baseLibrary :: TestTree libraryTests :: TestTree
baseLibrary = testGroup "Library Tests" libraryTests = testGroup "Library Tests"
[ testCase "K combinator 1" $ do [ testCase "K combinator 1" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "k (t) (t t)" let input = "k (t) (t t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "K combinator 2" $ do , testCase "K combinator 2" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "k (t t) (t)" let input = "k (t t) (t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "K combinator 3" $ do , testCase "K combinator 3" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "k (t t t) (t)" let input = "k (t t t) (t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf result env @?= Fork Leaf Leaf
, testCase "S combinator" $ do , testCase "S combinator" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "s (t) (t) (t)" let input = "s (t) (t) (t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf (Stem Leaf) result env @?= Fork Leaf (Stem Leaf)
, testCase "SKK == I (fully expanded)" $ do , testCase "SKK == I (fully expanded)" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "s k k" let input = "s k k"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork (Stem (Stem Leaf)) (Stem Leaf) result env @?= Fork (Stem (Stem Leaf)) (Stem Leaf)
, testCase "I combinator" $ do , testCase "I combinator" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "i not?" let input = "i not?"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) (Fork Leaf (Fork Leaf Leaf)) result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) (Fork Leaf (Fork Leaf Leaf))
, testCase "Triage test Leaf" $ do , testCase "Triage test Leaf" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "test t" let input = "test t"
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Leaf\"" env @?= "\"Leaf\""
, testCase "Triage test (Stem Leaf)" $ do , testCase "Triage test (Stem Leaf)" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "test (t t)" let input = "test (t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Stem\"" env @?= "\"Stem\""
, testCase "Triage test (Fork Leaf Leaf)" $ do , testCase "Triage test (Fork Leaf Leaf)" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "test (t t t)" let input = "test (t t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Fork\"" env @?= "\"Fork\""
, testCase "Boolean NOT: true" $ do , testCase "Boolean NOT: true" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "not? true" let input = "not? true"
env = result $ evalTricu library (parseTricu input) env = result $ evalTricu library (parseTricu input)
env @?= Leaf env @?= Leaf
, testCase "Boolean NOT: false" $ do , testCase "Boolean NOT: false" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "not? false" let input = "not? false"
env = result $ evalTricu library (parseTricu input) env = result $ evalTricu library (parseTricu input)
env @?= Stem Leaf env @?= Stem Leaf
, testCase "Boolean AND TF" $ do , testCase "Boolean AND TF" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "and? (t t) (t)" let input = "and? (t t) (t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "Boolean AND FT" $ do , testCase "Boolean AND FT" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "and? (t) (t t)" let input = "and? (t) (t t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "Boolean AND FF" $ do , testCase "Boolean AND FF" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "and? (t) (t)" let input = "and? (t) (t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "Boolean AND TT" $ do , testCase "Boolean AND TT" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "and? (t t) (t t)" let input = "and? (t t) (t t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "List head" $ do , testCase "List head" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "head [(t) (t t) (t t t)]" let input = "head [(t) (t t) (t t t)]"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "List tail" $ do , testCase "List tail" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "head (tail (tail [(t) (t t) (t t t)]))" let input = "head (tail (tail [(t) (t t) (t t t)]))"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf result env @?= Fork Leaf Leaf
, testCase "List map" $ do , testCase "List map" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))" let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf result env @?= Fork Leaf Leaf
, testCase "Empty list check" $ do , testCase "Empty list check" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "emptyList? []" let input = "emptyList? []"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "Non-empty list check" $ do , testCase "Non-empty list check" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "not? (emptyList? [(1) (2) (3)])" let input = "not? (emptyList? [(1) (2) (3)])"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "Concatenate strings" $ do , testCase "Concatenate strings" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "lconcat \"Hello, \" \"world!\"" let input = "lconcat \"Hello, \" \"world!\""
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Hello, world!\"" env @?= "\"Hello, world!\""
, testCase "Verifying Equality" $ do , testCase "Verifying Equality" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "equal? (t t t) (t t t)" let input = "equal? (t t t) (t t t)"
@ -479,75 +393,19 @@ baseLibrary = testGroup "Library Tests"
result env @?= Stem Leaf result env @?= Stem Leaf
] ]
fileEval :: TestTree fileEvaluationTests :: TestTree
fileEval = testGroup "File evaluation tests" fileEvaluationTests = testGroup "Evaluation tests"
[ testCase "Forks" $ do [ testCase "Forks" $ do
res <- liftIO $ evaluateFileResult "./test/fork.tri" res <- liftIO $ evaluateFileResult "./test/fork.tri"
res @?= Fork Leaf Leaf res @?= Fork Leaf Leaf
, testCase "File ends with comment" $ do , testCase "File ends with comment" $ do
res <- liftIO $ evaluateFileResult "./test/comments-1.tri" res <- liftIO $ evaluateFileResult "./test/comments-1.tri"
res @?= Fork (Stem Leaf) Leaf res @?= Fork (Stem Leaf) Leaf
, testCase "Mapping and Equality" $ do , testCase "Mapping and Equality" $ do
library <- liftIO $ evaluateFile "./lib/base.tri" res <- liftIO $ evaluateFileResult "./test/map.tri"
fEnv <- liftIO $ evaluateFileWithContext library "./test/map.tri" res @?= Stem Leaf
(mainResult fEnv) @?= Stem Leaf
, testCase "Eval and decoding string" $ do , testCase "Eval and decoding string" $ do
library <- liftIO $ evaluateFile "./lib/base.tri" library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./test/string.tri" res <- liftIO $ evaluateFileWithContext library "./test/string.tri"
decodeResult (result res) @?= "\"String test!\"" decodeResult (result res) @?= "\"String test!\""
] ]
modules :: TestTree
modules = testGroup "Test modules"
[ testCase "Detect cyclic dependencies" $ do
result <- try (liftIO $ evaluateFileResult "./test/cycle-1.tri") :: IO (Either SomeException T)
case result of
Left e -> do
let errorMsg = show e
if "Encountered cyclic import" `isInfixOf` errorMsg
then return ()
else assertFailure $ "Unexpected error: " ++ errorMsg
Right _ -> assertFailure "Expected cyclic dependencies"
, testCase "Module imports and namespacing" $ do
res <- liftIO $ evaluateFileResult "./test/namespace-A.tri"
res @?= Leaf
, testCase "Multiple imports" $ do
res <- liftIO $ evaluateFileResult "./test/vars-A.tri"
res @?= Leaf
, testCase "Error on unresolved variable" $ do
result <- try (liftIO $ evaluateFileResult "./test/unresolved-A.tri") :: IO (Either SomeException T)
case result of
Left e -> do
let errorMsg = show e
if "undefinedVar" `isInfixOf` errorMsg
then return ()
else assertFailure $ "Unexpected error: " ++ errorMsg
Right _ -> assertFailure "Expected unresolved variable error"
, testCase "Multi-level imports" $ do
res <- liftIO $ evaluateFileResult "./test/multi-level-A.tri"
res @?= Leaf
, testCase "Lambda expression namespaces" $ do
res <- liftIO $ evaluateFileResult "./test/lambda-A.tri"
res @?= Leaf
]
-- All of our demo tests are also module tests
demos :: TestTree
demos = testGroup "Test provided demo functionality"
[ testCase "Structural equality demo" $ do
res <- liftIO $ evaluateFileResult "./demos/equality.tri"
decodeResult res @?= "t t"
, testCase "Convert values back to source code demo" $ do
res <- liftIO $ evaluateFileResult "./demos/toSource.tri"
decodeResult res @?= "\"(t (t (t t) (t t t)) (t t (t t t)))\""
, testCase "Determining the size of functions" $ do
res <- liftIO $ evaluateFileResult "./demos/size.tri"
decodeResult res @?= "454"
, testCase "Level Order Traversal demo" $ do
res <- liftIO $ evaluateFileResult "./demos/levelOrderTraversal.tri"
decodeResult res @?= "\"\n1 \n2 3 \n4 5 6 7 \n8 11 10 9 12 \""
]

View File

@ -2,7 +2,7 @@
-- t (t t) (t (t t t)) -- t (t t) (t (t t t))
-- t (t t t) (t t) -- t (t t t) (t t)
-- x = (\a : a) -- x = (\a : a)
main = t (t t) t -- Fork (Stem Leaf) Leaf t (t t) t -- Fork (Stem Leaf) Leaf
-- t t -- t t
-- x -- x
-- x = (\a : a) -- x = (\a : a)

View File

@ -1,5 +0,0 @@
!module Cycle
!import "test/cycle-2.tri" Cycle2
cycle1 = t Cycle2.cycle2

View File

@ -1,5 +0,0 @@
!module Cycle2
!import "test/cycle-1.tri" Cycle1
cycle2 = t Cycle1.cycle1

View File

@ -1 +1 @@
main = t t t t t t

View File

@ -1,2 +0,0 @@
!module A
main = (\x : x) t

View File

@ -1,2 +1,24 @@
false = t
true = t t
_ = t
k = t t
i = t (t k) t
s = t (t (k t)) t
m = s i i
b = s (k s) k
c = s (s (k s) (s (k k) s)) (k k)
iC = (\a b c : s a (k c) b)
yi = (\i : b m (c b (i m)))
y = yi iC
triage = (\a b c : t (t a b) c)
pair = t
matchList = (\oe oc : triage oe _ oc)
lconcat = y (\self : matchList (\k : k) (\h r k : pair h (self r k)))
hmap = y (\self : matchList (\f : t) (\hd tl f : pair (f hd) (self tl f)))
map = (\f l : hmap l f)
lAnd = triage (\x : false) (\_ x : x) (\_ _ x : x)
lOr = triage (\x : x) (\_ _ : true) (\_ _ x : true)
equal = y (\self : triage (triage true (\z : false) (\y z : false)) (\ax : triage false (self ax) (\y z : false)) (\ax ay : triage false (\z : false) (\bx by : lAnd (self ax bx) (self ay by))))
x = map (\i : lconcat "Successfully concatenated " i) [("two strings!")] x = map (\i : lconcat "Successfully concatenated " i) [("two strings!")]
main = equal? x [("Successfully concatenated two strings!")] equal x [("Successfully concatenated two strings!")]

View File

@ -1,5 +0,0 @@
!module Test
!import "lib/base.tri" Lib
main = Lib.not? t

View File

@ -1 +0,0 @@
n = t t t

View File

@ -1,3 +0,0 @@
!module A
!import "./test/multi-level-B.tri" B
main = B.main

View File

@ -1,3 +0,0 @@
!module B
!import "./test/multi-level-C.tri" C
main = C.val

View File

@ -1,2 +0,0 @@
!module C
val = t

View File

@ -1,3 +0,0 @@
!module A
!import "./test/namespace-B.tri" B
main = B.x

View File

@ -1,2 +0,0 @@
!module B
x = t

View File

@ -1,21 +0,0 @@
compose = \f g x : f (g x)
succ = y (\self :
triage
1
t
(triage
(t (t t))
(\_ tail : t t (self tail))
t))
size = (\x :
(y (\self x :
compose succ
(triage
(\x : x)
self
(\x y : compose (self x) (self y))
x)) x 0))
size size

View File

@ -1 +0,0 @@
namedTerm = undefinedForTesting

View File

@ -1,2 +0,0 @@
!module A
main = undefinedVar

View File

@ -1,7 +0,0 @@
!module A
!import "./test/vars-B.tri" B
!import "./test/vars-C.tri" C
main = B.y (C.z)

View File

@ -1,2 +0,0 @@
!module B
y = \x : x

View File

@ -1,2 +0,0 @@
!module C
z = t

View File

@ -1,7 +1,7 @@
cabal-version: 1.12 cabal-version: 1.12
name: tricu name: tricu
version: 0.12.0 version: 0.7.0
description: A micro-language for exploring Tree Calculus description: A micro-language for exploring Tree Calculus
author: James Eversole author: James Eversole
maintainer: james@eversole.co maintainer: james@eversole.co