Compare commits

..

12 Commits
0.14.0 ... main

Author SHA1 Message Date
b8e2743103 Updates to demos 2025-04-16 14:23:53 -05:00
25bfe139e8 String escaping using backslash 2025-04-15 10:52:53 -05:00
f2beb86d8a Drop backslash from lambda definitions 2025-04-15 10:34:38 -05:00
5024a2be4c Revert flake.nix 2025-02-08 10:24:14 -06:00
fccee3e61c Static linking part 2
Some checks failed
Test, Build, and Release / test (push) Failing after 3h6m55s
Test, Build, and Release / build (push) Has been cancelled
2025-02-07 19:22:31 -06:00
ad1918aa6f Statically link binaries
Some checks failed
Test, Build, and Release / test (push) Failing after 50s
Test, Build, and Release / build (push) Has been skipped
2025-02-07 18:32:09 -06:00
0a505172b4 Adds several new REPL utilities
Also removes some broken list library functions
2025-02-07 18:25:11 -06:00
e6e18239a7 Smarter decoding of terms
This update includes an update to `decodeResult` that makes string
decoding far less aggressive. This also replaces the `!decode` REPL
command with `!output` to allow users to switch output format on the
fly. New tests are included for verifying decoding behavior; this group
needs to be fleshed out further.
2025-02-07 15:06:25 -06:00
871245b567 Lint cleanup and README updates 2025-02-07 12:37:27 -06:00
30b9505d5f Clearer definition for apply 2025-02-06 08:32:17 -06:00
f4e50353ed Support for list literals in Lambdas
All checks were successful
Test, Build, and Release / test (push) Successful in 1m35s
Test, Build, and Release / build (push) Successful in 1m12s
2025-02-02 12:08:08 -06:00
f9864b8361 REPL namespaces; lib function for pattern matching
All checks were successful
Test, Build, and Release / test (push) Successful in 1m52s
Test, Build, and Release / build (push) Successful in 1m20s
Adds support for REPL namespacing, primarily to avoid `main` collisions.
Also adds a library function for an ergonomic pattern matching function
that I've been noodling on. I might explore ways to make list syntax
less annoying specifically for pattern matching like this.
2025-02-02 10:56:40 -06:00
25 changed files with 592 additions and 324 deletions

1
.gitignore vendored
View File

@ -9,3 +9,4 @@
WD WD
bin/ bin/
dist* dist*
.tricu_history

View File

@ -11,12 +11,11 @@ tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)
## Features ## Features
- Tree Calculus operator: `t` - Tree Calculus operator: `t`
- Assignments: `x = t t` - Immutable definitions: `x = t t`
- Immutable definitions - Lambda abstraction: `id = (a : a)`
- Lambda abstraction syntax: `id = (\a : a)`
- List, Number, and String literals: `[(2) ("Hello")]` - List, Number, and String literals: `[(2) ("Hello")]`
- Function application: `not (not false)` - Function application: `not (not false)`
- Higher order/first-class functions: `map (\a : append a "!") [("Hello")]` - Higher order/first-class functions: `map (a : append a "!") [("Hello")]`
- Intensionality blurs the distinction between functions and data (see REPL examples) - Intensionality blurs the distinction between functions and data (see REPL examples)
- Simple module system for code organization - Simple module system for code organization
@ -24,15 +23,15 @@ tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)
``` ```
tricu < -- Anything after `--` on a single line is a comment tricu < -- Anything after `--` on a single line is a comment
tricu < id = (\a : a) -- Lambda abstraction is eliminated to tree calculus terms tricu < id = (a : a) -- Lambda abstraction is eliminated to tree calculus terms
tricu < head (map (\i : append i " world!") [("Hello, ")]) tricu < head (map (i : append i " world!") [("Hello, ")])
tricu > "Hello, world!" tricu > "Hello, world!"
tricu < id (head (map (\i : append i " world!") [("Hello, ")])) tricu < id (head (map (i : append i " world!") [("Hello, ")]))
tricu > "Hello, world!" tricu > "Hello, world!"
tricu < -- Intensionality! We can inspect the structure of a function or data. tricu < -- Intensionality! We can inspect the structure of a function or data.
tricu < triage = (\a b c : t (t a b) c) tricu < triage = (a b c : t (t a b) c)
tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork") tricu < test = triage "Leaf" (z : "Stem") (a b : "Fork")
tricu < test (t t) tricu < test (t t)
tricu > "Stem" tricu > "Stem"
tricu < -- We can even convert a term back to source code (/demos/toSource.tri) tricu < -- We can even convert a term back to source code (/demos/toSource.tri)
@ -41,13 +40,21 @@ tricu > "(t (t (t t) (t t t)) (t t (t t t)))"
tricu < -- or calculate its size (/demos/size.tri) tricu < -- or calculate its size (/demos/size.tri)
tricu < size not? tricu < size not?
tricu > 12 tricu > 12
tricu < -- REPL Commands:
tricu < !definitions -- Lists all available definitions
tricu < !output -- Change output format (Tree, FSL, AST, etc.)
tricu < !import -- Import definitions from a file
tricu < !exit -- Exit the REPL
tricu < !clear -- ANSI screen clear
tricu < !save -- Save all REPL definitions to a file that you can !import
tricu < !reset -- Clear all REPL definitions
tricu < !version -- Print tricu version
``` ```
## Installation and Use ## Installation and Use
[Releases are available for Linux.](https://git.eversole.co/James/tricu/releases) You can easily build and run this project using [Nix](https://nixos.org/download/).
Or you can easily build and run this project using [Nix](https://nixos.org/download/).
- Quick Start (REPL): - Quick Start (REPL):
- `nix run git+https://git.eversole.co/James/tricu` - `nix run git+https://git.eversole.co/James/tricu`
@ -84,6 +91,12 @@ tricu decode [OPTIONS]
Defaults to stdin. Defaults to stdin.
``` ```
## Collaborating
I am happy to accept issue reports, pull requests, or questions about tricu [via email](mailto:james@eversole.co).
If you want to collaborate but don't want to email back-and-forth, please reach out via email once to let me know and I will provision a git.eversole.co account for you.
## Acknowledgements ## Acknowledgements
Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog). Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog).

View File

@ -11,20 +11,17 @@ demo_true = t t
not_TC? = t (t (t t) (t t t)) (t t (t t t)) not_TC? = t (t (t t) (t t t)) (t t (t t t))
-- /demos/toSource.tri contains an explanation of `triage` -- /demos/toSource.tri contains an explanation of `triage`
demo_triage = \a b c : t (t a b) c demo_triage = a b c : t (t a b) c
demo_matchBool = (\ot of : demo_triage demo_matchBool = a b : demo_triage b (_ : a) (_ _ : a)
of
(\_ : ot)
(\_ _ : ot)
)
-- Lambda representation of the Boolean `not` function -- Lambda representation of the Boolean `not` function
not_Lambda? = demo_matchBool demo_false demo_true not_Lambda? = demo_matchBool demo_false demo_true
-- Since tricu eliminates Lambda terms to SKI combinators, the tree form of many -- As tricu eliminates Lambda terms to SKI combinators, the tree form of many
-- functions defined via Lambda terms are larger than the most efficient TC -- functions defined via Lambda terms are larger than the most efficient TC
-- representation. Between different languages that evaluate to tree calculus -- representation possible. Between different languages that evaluate to tree
-- terms, the exact implementation of Lambda elimination may differ and lead -- calculus terms, the exact implementation of Lambda elimination may differ
-- to different tree representations even if they share extensional behavior. -- and lead to different trees even if they share extensional behavior.
-- Let's see if these are the same: -- Let's see if these are the same:
lambdaEqualsTC = equal? not_TC? not_Lambda? lambdaEqualsTC = equal? not_TC? not_Lambda?

View File

@ -18,15 +18,15 @@ main = exampleTwo
-- / / \ -- / / \
-- 4 5 6 -- 4 5 6
label = \node : head node label = node : head node
left = (\node : if (emptyList? node) left = node : (if (emptyList? node)
[] []
(if (emptyList? (tail node)) (if (emptyList? (tail node))
[] []
(head (tail node)))) (head (tail node))))
right = (\node : if (emptyList? node) right = node : (if (emptyList? node)
[] []
(if (emptyList? (tail node)) (if (emptyList? (tail node))
[] []
@ -34,25 +34,25 @@ right = (\node : if (emptyList? node)
[] []
(head (tail (tail node)))))) (head (tail (tail node))))))
processLevel = y (\self queue : if (emptyList? queue) processLevel = y (self queue : if (emptyList? queue)
[] []
(pair (map label queue) (self (filter (pair (map label queue) (self (filter
(\node : not? (emptyList? node)) (node : not? (emptyList? node))
(append (map left queue) (map right queue)))))) (append (map left queue) (map right queue))))))
levelOrderTraversal_ = \a : processLevel (t a t) levelOrderTraversal_ = a : processLevel (t a t)
toLineString = y (\self levels : if (emptyList? levels) toLineString = y (self levels : if (emptyList? levels)
"" ""
(append (append
(append (map (\x : append x " ") (head levels)) "") (append (map (x : append x " ") (head levels)) "")
(if (emptyList? (tail levels)) "" (append (t (t 10 t) t) (self (tail levels)))))) (if (emptyList? (tail levels)) "" (append (t (t 10 t) t) (self (tail levels))))))
levelOrderToString = \s : toLineString (levelOrderTraversal_ s) levelOrderToString = s : toLineString (levelOrderTraversal_ s)
flatten = foldl (\acc x : append acc x) "" flatten = foldl (acc x : append acc x) ""
levelOrderTraversal = \s : append (t 10 t) (flatten (levelOrderToString s)) levelOrderTraversal = s : append (t 10 t) (flatten (levelOrderToString s))
exampleOne = levelOrderTraversal [("1") exampleOne = levelOrderTraversal [("1")
[("2") [("4") t t] t] [("2") [("4") t t] t]

37
demos/patternMatching.tri Normal file
View File

@ -0,0 +1,37 @@
!import "../lib/patterns.tri" !Local
-- We can do conditional pattern matching by providing a list of lists, where
-- each sublist contains a boolean expression and a function to return if said
-- boolean expression evaluates to true.
value = 42
main = match value [[(equal? "Hello") (_ : ", world!")] [(equal? 42) (_ : "The answer.")]]
-- < main
-- > "The answer."
matchExample = (x : match x
[[(equal? 1) (_ : "one")]
[(equal? 2) (_ : "two")]
[(equal? 3) (_ : "three")]
[(equal? 4) (_ : "four")]
[(equal? 5) (_ : "five")]
[(equal? 6) (_ : "six")]
[(equal? 7) (_ : "seven")]
[(equal? 8) (_ : "eight")]
[(equal? 9) (_ : "nine")]
[(equal? 10) (_ : "ten")]
[ otherwise (_ : "I ran out of fingers!")]])
-- < matchExample 3
-- > "three"
-- < matchExample 5
-- > "five"
-- < matchExample 9
-- > "nine"
-- < matchExample 11
-- > "I ran out of fingers!"
-- < matchExample "three"
-- > "I ran out of fingers!"
-- < matchExample [("hello") ("world")]
-- > "I ran out of fingers!"

View File

@ -3,11 +3,9 @@
main = size size main = size size
size = (\x : size = x : y (self x : compose succ (triage
(y (\self x : id
compose succ self
(triage (x y : compose (self x) (self y))
(\x : x) x)
self ) x 0
(\x y : compose (self x) (self y))
x)) x 0))

View File

@ -18,25 +18,25 @@ main = toSource not?
sourceLeaf = t (head "t") sourceLeaf = t (head "t")
-- Stem case -- Stem case
sourceStem = (\convert : (\a rest : sourceStem = convert : (a rest :
t (head "(") -- Start with a left parenthesis "(". t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t" (t (head "t") -- Add a "t"
(t (head " ") -- Add a space. (t (head " ") -- Add a space.
(convert a -- Recursively convert the argument. (convert a -- Recursively convert the argument.
(t (head ")") rest)))))) -- Close with ")" and append the rest. (t (head ")") rest))))) -- Close with ")" and append the rest.
-- Fork case -- Fork case
sourceFork = (\convert : (\a b rest : sourceFork = convert : (a b rest :
t (head "(") -- Start with a left parenthesis "(". t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t" (t (head "t") -- Add a "t"
(t (head " ") -- Add a space. (t (head " ") -- Add a space.
(convert a -- Recursively convert the first arg. (convert a -- Recursively convert the first arg.
(t (head " ") -- Add another space. (t (head " ") -- Add another space.
(convert b -- Recursively convert the second arg. (convert b -- Recursively convert the second arg.
(t (head ")") rest)))))))) -- Close with ")" and append the rest. (t (head ")") rest))))))) -- Close with ")" and append the rest.
-- Wrapper around triage -- Wrapper around triage
toSource_ = y (\self arg : toSource_ = y (self arg :
triage triage
sourceLeaf -- `triage` "a" case, Leaf sourceLeaf -- `triage` "a" case, Leaf
(sourceStem self) -- `triage` "b" case, Stem (sourceStem self) -- `triage` "b" case, Stem
@ -44,7 +44,7 @@ toSource_ = y (\self arg :
arg) -- The term to be inspected arg) -- The term to be inspected
-- toSource takes a single TC term and returns a String -- toSource takes a single TC term and returns a String
toSource = \v : toSource_ v "" toSource = v : toSource_ v ""
exampleOne = toSource true -- OUT: "(t t)" exampleOne = toSource true -- OUT: "(t t)"
exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))" exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"

View File

@ -34,6 +34,7 @@
devShells.default = pkgs.mkShell { devShells.default = pkgs.mkShell {
buildInputs = with pkgs; [ buildInputs = with pkgs; [
haskellPackages.cabal-install haskellPackages.cabal-install
haskellPackages.ghc-events
haskellPackages.ghcid haskellPackages.ghcid
customGHC customGHC
upx upx

View File

@ -1,74 +1,74 @@
false = t false = t
_ = t _ = t
true = t t true = t t
id = \a : a id = a : a
const = \a b : a const = a b : a
pair = t pair = t
if = \cond then else : t (t else (t t then)) t cond if = cond then else : t (t else (t t then)) t cond
y = ((\mut wait fun : wait mut (\x : fun (wait mut x))) y = ((mut wait fun : wait mut (x : fun (wait mut x)))
(\x : x x) (x : x x)
(\a0 a1 a2 : t (t a0) (t t a2) a1)) (a0 a1 a2 : t (t a0) (t t a2) a1))
compose = \f g x : f (g x) compose = f g x : f (g x)
triage = \leaf stem fork : t (t leaf stem) fork triage = leaf stem fork : t (t leaf stem) fork
test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork") test = triage "Leaf" (_ : "Stem") (_ _ : "Fork")
matchBool = (\ot of : triage matchBool = (ot of : triage
of of
(\_ : ot) (_ : ot)
(\_ _ : ot) (_ _ : ot)
) )
lAnd = (triage lAnd = (triage
(\_ : false) (_ : false)
(\_ x : x) (_ x : x)
(\_ _ x : x)) (_ _ x : x))
lOr = (triage lOr = (triage
(\x : x) (x : x)
(\_ _ : true) (_ _ : true)
(\_ _ _ : true)) (_ _ _ : true))
matchPair = \a : triage _ _ a matchPair = a : triage _ _ a
not? = matchBool false true not? = matchBool false true
and? = matchBool id (\_ : false) and? = matchBool id (_ : false)
or? = (\x z : or? = (x z :
matchBool matchBool
(matchBool true true z) (matchBool true true z)
(matchBool true false z) (matchBool true false z)
x) x)
xor? = (\x z : xor? = (x z :
matchBool matchBool
(matchBool false true z) (matchBool false true z)
(matchBool true false z) (matchBool true false z)
x) x)
equal? = y (\self : triage equal? = y (self : triage
(triage (triage
true true
(\_ : false) (_ : false)
(\_ _ : false)) (_ _ : false))
(\ax : (ax :
triage triage
false false
(self ax) (self ax)
(\_ _ : false)) (_ _ : false))
(\ax ay : (ax ay :
triage triage
false false
(\_ : false) (_ : false)
(\bx by : lAnd (self ax bx) (self ay by)))) (bx by : lAnd (self ax bx) (self ay by))))
succ = y (\self : succ = y (self :
triage triage
1 1
t t
(triage (triage
(t (t t)) (t (t t))
(\_ tail : t t (self tail)) (_ tail : t t (self tail))
t)) t))

View File

@ -1,77 +1,70 @@
!import "base.tri" !Local !import "base.tri" !Local
matchList = \a b : triage a _ b _ = t
emptyList? = matchList true (\_ _ : false) matchList = a b : triage a _ b
head = matchList t (\head _ : head)
tail = matchList t (\_ tail : tail)
append = y (\self : matchList emptyList? = matchList true (_ _ : false)
(\k : k) head = matchList t (head _ : head)
(\h r k : pair h (self r k))) tail = matchList t (_ tail : tail)
lExist? = y (\self x : matchList append = y (self : matchList
(k : k)
(h r k : pair h (self r k)))
lExist? = y (self x : matchList
false false
(\h z : or? (equal? x h) (self x z))) (h z : or? (equal? x h) (self x z)))
map_ = y (\self : map_ = y (self :
matchList matchList
(\_ : t) (_ : t)
(\head tail f : pair (f head) (self tail f))) (head tail f : pair (f head) (self tail f)))
map = \f l : map_ l f map = f l : map_ l f
filter_ = y (\self : matchList filter_ = y (self : matchList
(\_ : t) (_ : t)
(\head tail f : matchBool (t head) id (f head) (self tail f))) (head tail f : matchBool (t head) id (f head) (self tail f)))
filter = \f l : filter_ l f filter = f l : filter_ l f
foldl_ = y (\self f l x : matchList (\acc : acc) (\head tail acc : self f tail (f acc head)) l x) foldl_ = y (self f l x : matchList (acc : acc) (head tail acc : self f tail (f acc head)) l x)
foldl = \f x l : foldl_ f l x foldl = f x l : foldl_ f l x
foldr_ = y (\self x f l : matchList x (\head tail : f (self x f tail) head) l) foldr_ = y (self x f l : matchList x (head tail : f (self x f tail) head) l)
foldr = \f x l : foldr_ x f l foldr = f x l : foldr_ x f l
length = y (\self : matchList length = y (self : matchList
0 0
(\_ tail : succ (self tail))) (_ tail : succ (self tail)))
reverse = y (\self : matchList reverse = y (self : matchList
t t
(\head tail : append (self tail) (pair head t))) (head tail : append (self tail) (pair head t)))
snoc = y (\self x : matchList snoc = y (self x : matchList
(pair x t) (pair x t)
(\h z : pair h (self x z))) (h z : pair h (self x z)))
count = y (\self x : matchList count = y (self x : matchList
0 0
(\h z : matchBool (h z : matchBool
(succ (self x z)) (succ (self x z))
(self x z) (self x z)
(equal? x h))) (equal? x h)))
last = y (\self : matchList last = y (self : matchList
t t
(\hd tl : matchBool (hd tl : matchBool
hd hd
(self tl) (self tl)
(emptyList? tl))) (emptyList? tl)))
all? = y (\self pred : matchList all? = y (self pred : matchList
true true
(\h z : and? (pred h) (self pred z))) (h z : and? (pred h) (self pred z)))
any? = y (\self pred : matchList any? = y (self pred : matchList
false false
(\h z : or? (pred h) (self pred z))) (h z : or? (pred h) (self pred z)))
unique_ = y (\self seen : matchList intersect = xs ys : filter (x : lExist? x ys) xs
t
(\head rest : matchBool
(self seen rest)
(pair head (self (pair head seen) rest))
(lExist? head seen)))
unique = \xs : unique_ t xs
intersect = \xs ys : filter (\x : lExist? x ys) xs
union = \xs ys : unique (append xs ys)

24
lib/patterns.tri Normal file
View File

@ -0,0 +1,24 @@
!import "base.tri" !Local
!import "list.tri" List
match_ = y (self value patterns :
triage
t
(_ : t)
(pattern rest :
triage
t
(_ : t)
(test result :
if (test value)
(result value)
(self value rest))
pattern)
patterns)
match = (value patterns :
match_ value (List.map (sublist :
pair (List.head sublist) (List.head (List.tail sublist)))
patterns))
otherwise = const (t t)

View File

@ -75,6 +75,9 @@ elimLambda = go
go (SLambda [f] (SLambda [g] (SLambda [x] body))) go (SLambda [f] (SLambda [g] (SLambda [x] body)))
| body == SApp (SVar f) (SApp (SVar g) (SVar x)) = _B | body == SApp (SVar f) (SApp (SVar g) (SVar x)) = _B
-- General elimination -- General elimination
go (SLambda [v] (SList xs))
= elimLambda (SLambda [v] (foldr wrapTLeaf TLeaf xs))
where wrapTLeaf m r = SApp (SApp TLeaf m) r
go (SLambda (v:vs) body) go (SLambda (v:vs) body)
| null vs = toSKI v (elimLambda body) | null vs = toSKI v (elimLambda body)
| otherwise = elimLambda (SLambda [v] (SLambda vs body)) | otherwise = elimLambda (SLambda [v] (SLambda vs body))

View File

@ -6,6 +6,7 @@ import Parser
import Research import Research
import Data.List (partition) import Data.List (partition)
import Data.Maybe (mapMaybe)
import Control.Monad (foldM) import Control.Monad (foldM)
import System.IO import System.IO
import System.FilePath (takeDirectory, normalise, (</>)) import System.FilePath (takeDirectory, normalise, (</>))
@ -13,6 +14,26 @@ import System.FilePath (takeDirectory, normalise, (</>))
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Set as Set import qualified Data.Set as Set
extractMain :: Env -> Either String T
extractMain env =
case Map.lookup "main" env of
Just result -> Right result
Nothing -> Left "No `main` function detected"
processImports :: Set.Set FilePath -> FilePath -> FilePath -> [TricuAST]
-> Either String ([TricuAST], [(FilePath, String, FilePath)])
processImports seen base currentPath asts =
let (imports, nonImports) = partition isImp asts
importPaths = mapMaybe getImportInfo imports
in if currentPath `Set.member` seen
then Left $ "Encountered cyclic import: " ++ currentPath
else Right (nonImports, importPaths)
where
isImp (SImport _ _) = True
isImp _ = False
getImportInfo (SImport p n) = Just (p, n, makeRelativeTo currentPath p)
getImportInfo _ = Nothing
evaluateFileResult :: FilePath -> IO T evaluateFileResult :: FilePath -> IO T
evaluateFileResult filePath = do evaluateFileResult filePath = do
contents <- readFile filePath contents <- readFile filePath
@ -20,11 +41,11 @@ evaluateFileResult filePath = do
case parseProgram tokens of case parseProgram tokens of
Left err -> errorWithoutStackTrace (handleParseError err) Left err -> errorWithoutStackTrace (handleParseError err)
Right ast -> do Right ast -> do
ast <- preprocessFile filePath processedAst <- preprocessFile filePath
let finalEnv = evalTricu Map.empty ast let finalEnv = evalTricu Map.empty processedAst
case Map.lookup "main" finalEnv of case extractMain finalEnv of
Just finalResult -> return finalResult Right result -> return result
Nothing -> errorWithoutStackTrace "No `main` function detected" Left err -> errorWithoutStackTrace err
evaluateFile :: FilePath -> IO Env evaluateFile :: FilePath -> IO Env
evaluateFile filePath = do evaluateFile filePath = do
@ -50,37 +71,25 @@ preprocessFile :: FilePath -> IO [TricuAST]
preprocessFile p = preprocessFile' Set.empty p p preprocessFile p = preprocessFile' Set.empty p p
preprocessFile' :: Set.Set FilePath -> FilePath -> FilePath -> IO [TricuAST] preprocessFile' :: Set.Set FilePath -> FilePath -> FilePath -> IO [TricuAST]
preprocessFile' s b p preprocessFile' seen base currentPath = do
| p `Set.member` s = contents <- readFile currentPath
errorWithoutStackTrace $ "Encountered cyclic import: " ++ p let tokens = lexTricu contents
| otherwise = do case parseProgram tokens of
c <- readFile p Left err -> errorWithoutStackTrace (handleParseError err)
let t = lexTricu c Right ast ->
case parseProgram t of case processImports seen base currentPath ast of
Left e -> errorWithoutStackTrace (handleParseError e) Left err -> errorWithoutStackTrace err
Right a -> do Right (nonImports, importPaths) -> do
let (i, n) = partition isImp a let seen' = Set.insert currentPath seen
let s' = Set.insert p s imported <- concat <$> mapM (processImportPath seen' base) importPaths
r <- concat <$> pure $ imported ++ nonImports
mapM (procImp s' "" p) i
pure $ r ++ n
where where
isImp :: TricuAST -> Bool processImportPath seen base (path, name, importPath) = do
ast <- preprocessFile' seen base importPath
pure $ map (nsDefinition (if name == "!Local" then "" else name))
$ filter (not . isImp) ast
isImp (SImport _ _) = True isImp (SImport _ _) = True
isImp _ = False isImp _ = False
procImp :: Set.Set FilePath -> String -> FilePath -> TricuAST -> IO [TricuAST]
procImp s m f (SImport p "!Local") = do
let ip = makeRelativeTo f p
a <- preprocessFile' s b ip
let d = filter (not . isImp) a
pure $ map (nsDefinition m) d
procImp s _ f (SImport p n) = do
let ip = makeRelativeTo f p
a <- preprocessFile' s b ip
let d = filter (not . isImp) a
pure $ map (nsDefinition n) d
procImp _ _ _ _ = error "Unexpected non-import in processImport"
makeRelativeTo :: FilePath -> FilePath -> FilePath makeRelativeTo :: FilePath -> FilePath -> FilePath
makeRelativeTo f i = makeRelativeTo f i =

View File

@ -3,6 +3,7 @@ module Lexer where
import Research import Research
import Control.Monad (void) import Control.Monad (void)
import Data.Functor (($>))
import Data.Void import Data.Void
import Text.Megaparsec import Text.Megaparsec
import Text.Megaparsec.Char hiding (space) import Text.Megaparsec.Char hiding (space)
@ -40,7 +41,6 @@ tricuLexer = do
, try stringLiteral , try stringLiteral
, assign , assign
, colon , colon
, backslash
, openParen , openParen
, closeParen , closeParen
, openBracket , openBracket
@ -54,7 +54,7 @@ lexTricu input = case runParser tricuLexer "" input of
keywordT :: Lexer LToken keywordT :: Lexer LToken
keywordT = string "t" *> notFollowedBy alphaNumChar *> pure LKeywordT keywordT = string "t" *> notFollowedBy alphaNumChar $> LKeywordT
identifier :: Lexer LToken identifier :: Lexer LToken
identifier = do identifier = do
@ -63,7 +63,7 @@ identifier = do
<|> digitChar <|> char '_' <|> char '-' <|> char '?' <|> digitChar <|> char '_' <|> char '-' <|> char '?'
<|> char '$' <|> char '#' <|> char '@' <|> char '%' <|> char '$' <|> char '#' <|> char '@' <|> char '%'
let name = first : rest let name = first : rest
if (name == "t" || name == "!result") if name == "t" || name == "!result"
then fail "Keywords (`t`, `!result`) cannot be used as an identifier" then fail "Keywords (`t`, `!result`) cannot be used as an identifier"
else return (LIdentifier name) else return (LIdentifier name)
@ -76,7 +76,7 @@ namespace = do
return (LNamespace name) return (LNamespace name)
dot :: Lexer LToken dot :: Lexer LToken
dot = char '.' *> pure LDot dot = char '.' $> LDot
lImport :: Lexer LToken lImport :: Lexer LToken
lImport = do lImport = do
@ -88,28 +88,25 @@ lImport = do
return (LImport path name) return (LImport path name)
assign :: Lexer LToken assign :: Lexer LToken
assign = char '=' *> pure LAssign assign = char '=' $> LAssign
colon :: Lexer LToken colon :: Lexer LToken
colon = char ':' *> pure LColon colon = char ':' $> LColon
backslash :: Lexer LToken
backslash = char '\\' *> pure LBackslash
openParen :: Lexer LToken openParen :: Lexer LToken
openParen = char '(' *> pure LOpenParen openParen = char '(' $> LOpenParen
closeParen :: Lexer LToken closeParen :: Lexer LToken
closeParen = char ')' *> pure LCloseParen closeParen = char ')' $> LCloseParen
openBracket :: Lexer LToken openBracket :: Lexer LToken
openBracket = char '[' *> pure LOpenBracket openBracket = char '[' $> LOpenBracket
closeBracket :: Lexer LToken closeBracket :: Lexer LToken
closeBracket = char ']' *> pure LCloseBracket closeBracket = char ']' $> LCloseBracket
lnewline :: Lexer LToken lnewline :: Lexer LToken
lnewline = char '\n' *> pure LNewline lnewline = char '\n' $> LNewline
sc :: Lexer () sc :: Lexer ()
sc = space sc = space
@ -125,7 +122,22 @@ integerLiteral = do
stringLiteral :: Lexer LToken stringLiteral :: Lexer LToken
stringLiteral = do stringLiteral = do
char '"' char '"'
content <- many (noneOf ['"']) content <- manyTill Lexer.charLiteral (char '"')
char '"' --"
return (LStringLiteral content) return (LStringLiteral content)
charLiteral :: Lexer Char
charLiteral = escapedChar <|> normalChar
where
normalChar = noneOf ['"', '\\']
escapedChar = do
void $ char '\\'
c <- oneOf ['n', 't', 'r', 'f', 'b', '\\', '"', '\'']
return $ case c of
'n' -> '\n'
't' -> '\t'
'r' -> '\r'
'f' -> '\f'
'b' -> '\b'
'\\' -> '\\'
'"' -> '"'
'\'' -> '\''

View File

@ -3,12 +3,12 @@ module Parser where
import Lexer import Lexer
import Research import Research
import Control.Monad (void) import Control.Monad (void)
import Control.Monad.State import Control.Monad.State
import Data.List.NonEmpty (toList) import Data.List.NonEmpty (toList)
import Data.Void (Void) import Data.Void (Void)
import Text.Megaparsec import Text.Megaparsec
import Text.Megaparsec.Error (ParseErrorBundle, errorBundlePretty) import Text.Megaparsec.Error (ParseErrorBundle, errorBundlePretty)
import qualified Data.Set as Set import qualified Data.Set as Set
data PState = PState data PState = PState
@ -130,7 +130,6 @@ parseFunctionM = do
parseLambdaM :: ParserM TricuAST parseLambdaM :: ParserM TricuAST
parseLambdaM = do parseLambdaM = do
let ident = (\case LIdentifier _ -> True; _ -> False) let ident = (\case LIdentifier _ -> True; _ -> False)
_ <- satisfyM (== LBackslash)
params <- some (satisfyM ident) params <- some (satisfyM ident)
_ <- satisfyM (== LColon) _ <- satisfyM (== LColon)
scnParserM scnParserM
@ -145,11 +144,11 @@ parseLambdaExpressionM = choice
parseAtomicLambdaM :: ParserM TricuAST parseAtomicLambdaM :: ParserM TricuAST
parseAtomicLambdaM = choice parseAtomicLambdaM = choice
[ parseVarM [ try parseLambdaM
, parseVarM
, parseTreeLeafM , parseTreeLeafM
, parseLiteralM , parseLiteralM
, parseListLiteralM , parseListLiteralM
, try parseLambdaM
, between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM , between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM
] ]
@ -205,7 +204,8 @@ parseTreeLeafOrParenthesizedM = choice
parseAtomicM :: ParserM TricuAST parseAtomicM :: ParserM TricuAST
parseAtomicM = choice parseAtomicM = choice
[ parseVarM [ try parseLambdaM
, parseVarM
, parseTreeLeafM , parseTreeLeafM
, parseListLiteralM , parseListLiteralM
, parseGroupedM , parseGroupedM

View File

@ -6,68 +6,153 @@ import Lexer
import Parser import Parser
import Research import Research
import Control.Exception (SomeException, catch) import Control.Exception (IOException, SomeException, catch
import Control.Monad.IO.Class (liftIO) , displayException)
import Control.Monad.Catch (handle, MonadCatch) import Control.Monad (forM_)
import Data.Char (isSpace) import Control.Monad.Catch (handle, MonadCatch)
import Data.List ( dropWhile import Control.Monad.IO.Class (liftIO)
, dropWhileEnd import Control.Monad.Trans.Class (lift)
, intercalate import Control.Monad.Trans.Maybe (MaybeT(..), runMaybeT)
, isPrefixOf) import Data.Char (isSpace, isUpper)
import Data.List (dropWhile, dropWhileEnd, isPrefixOf)
import Data.Version (showVersion)
import Paths_tricu (version)
import System.Console.Haskeline import System.Console.Haskeline
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Text as T
import qualified Data.Text.IO as T
repl :: Env -> IO () repl :: Env -> IO ()
repl env = runInputT defaultSettings (withInterrupt (loop env True)) repl env = runInputT settings (withInterrupt (loop env Decode))
where where
loop :: Env -> Bool -> InputT IO () settings :: Settings IO
loop env decode = handle (interruptHandler env decode) $ do settings = Settings
{ complete = completeWord Nothing " \t" completeCommands
, historyFile = Just "~/.local/state/tricu/history"
, autoAddHistory = True
}
completeCommands :: String -> IO [Completion]
completeCommands str = return $ map simpleCompletion $
filter (str `isPrefixOf`) commands
where
commands = [ "!exit"
, "!output"
, "!definitions"
, "!import"
, "!clear"
, "!save"
, "!reset"
, "!version"
]
loop :: Env -> EvaluatedForm -> InputT IO ()
loop env form = handle (interruptHandler env form) $ do
minput <- getInputLine "tricu < " minput <- getInputLine "tricu < "
case minput of case minput of
Nothing -> outputStrLn "Exiting tricu" Nothing -> outputStrLn "Exiting tricu"
Just s Just s
| strip s == "" -> loop env decode | strip s == "" -> loop env form
| strip s == "!exit" -> outputStrLn "Exiting tricu" | strip s == "!exit" -> outputStrLn "Exiting tricu"
| strip s == "!decode" -> do | strip s == "!clear" -> do
outputStrLn $ "Decoding " ++ (if decode then "disabled" else "enabled") liftIO $ putStr "\ESC[2J\ESC[H"
loop env (not decode) loop env form
| "!import" `isPrefixOf` strip s -> do | strip s == "!reset" -> do
let afterImport = dropWhile (== ' ') $ drop (length ("!import" :: String)) (strip s) outputStrLn "Environment reset to initial state"
if not (null afterImport) loop Map.empty form
then outputStrLn "Warning: REPL imports are interactive; \ | strip s == "!version" -> do
\additional arguments are ignored." outputStrLn $ "tricu version " ++ showVersion version
else pure () loop env form
path <- getInputLine "File path to load < " | "!save" `isPrefixOf` strip s -> handleSave env form
case path of | strip s == "!output" -> handleOutput env form
Nothing -> do | strip s == "!definitions" -> do
outputStrLn "No input received; stopping import." let defs = Map.keys $ Map.delete "!result" env
loop env decode if null defs
Just p -> do then outputStrLn "No definitions discovered."
loadedEnv <- liftIO $ evaluateFileWithContext env else do
(strip p) `catch` \e -> errorHandler env e outputStrLn "Available definitions:"
loop (Map.delete "!result" (Map.union loadedEnv env)) decode mapM_ outputStrLn defs
| take 2 s == "--" -> loop env decode loop env form
| "!import" `isPrefixOf` strip s -> handleImport env form
| take 2 s == "--" -> loop env form
| otherwise -> do | otherwise -> do
newEnv <- liftIO $ processInput env s decode `catch` errorHandler env newEnv <- liftIO $ processInput env s form `catch` errorHandler env
loop newEnv decode loop newEnv form
interruptHandler :: Env -> Bool -> Interrupt -> InputT IO () handleOutput :: Env -> EvaluatedForm -> InputT IO ()
interruptHandler env decode _ = do handleOutput env currentForm = do
let formats = [Decode, TreeCalculus, FSL, AST, Ternary, Ascii]
outputStrLn "Available output formats:"
mapM_ (\(i, f) -> outputStrLn $ show i ++ ". " ++ show f)
(zip [1..] formats)
result <- runMaybeT $ do
input <- MaybeT $ getInputLine "Select output format (1-6) < "
case reads input of
[(n, "")] | n >= 1 && n <= 6 ->
return $ formats !! (n-1)
_ -> MaybeT $ return Nothing
case result of
Nothing -> do
outputStrLn "Invalid selection. Keeping current output format."
loop env currentForm
Just newForm -> do
outputStrLn $ "Output format changed to: " ++ show newForm
loop env newForm
handleImport :: Env -> EvaluatedForm -> InputT IO ()
handleImport env form = do
res <- runMaybeT $ do
let fset = setComplete completeFilename defaultSettings
path <- MaybeT $ runInputT fset $
getInputLineWithInitial "File path to load < " ("", "")
text <- MaybeT $ liftIO $ handle (\e -> do
putStrLn $ "Error reading file: " ++ displayException (e :: IOException)
return Nothing
) $ Just <$> readFile (strip path)
case parseProgram (lexTricu text) of
Left err -> do
lift $ outputStrLn $ "Parse error: " ++ handleParseError err
MaybeT $ return Nothing
Right ast -> do
ns <- MaybeT $ runInputT defaultSettings $
getInputLineWithInitial "Namespace (or !Local for no namespace) < " ("", "")
let name = strip ns
if (name /= "!Local" && (null name || not (isUpper (head name)))) then do
lift $ outputStrLn "Namespace must start with an uppercase letter"
MaybeT $ return Nothing
else do
prog <- liftIO $ preprocessFile (strip path)
let code = case name of
"!Local" -> prog
_ -> nsDefinitions name prog
env' = evalTricu env code
return env'
case res of
Nothing -> do
outputStrLn "Import cancelled"
loop env form
Just env' ->
loop (Map.delete "!result" env') form
interruptHandler :: Env -> EvaluatedForm -> Interrupt -> InputT IO ()
interruptHandler env form _ = do
outputStrLn "Interrupted with CTRL+C\n\ outputStrLn "Interrupted with CTRL+C\n\
\You can use the !exit command or CTRL+D to exit" \You can use the !exit command or CTRL+D to exit"
loop env decode loop env form
processInput :: Env -> String -> Bool -> IO Env processInput :: Env -> String -> EvaluatedForm -> IO Env
processInput env input decode = do processInput env input form = do
let asts = parseTricu input let asts = parseTricu input
newEnv = evalTricu env asts newEnv = evalTricu env asts
case Map.lookup "!result" newEnv of case Map.lookup "!result" newEnv of
Just r -> do Just r -> do
putStrLn $ "tricu > " ++ putStrLn $ "tricu > " ++ formatResult form r
if decode
then decodeResult r
else show r
Nothing -> pure () Nothing -> pure ()
return newEnv return newEnv
@ -78,3 +163,28 @@ repl env = runInputT defaultSettings (withInterrupt (loop env True))
strip :: String -> String strip :: String -> String
strip = dropWhileEnd isSpace . dropWhile isSpace strip = dropWhileEnd isSpace . dropWhile isSpace
handleSave :: Env -> EvaluatedForm -> InputT IO ()
handleSave env form = do
let fset = setComplete completeFilename defaultSettings
path <- runInputT fset $
getInputLineWithInitial "File to save < " ("", "")
case path of
Nothing -> do
outputStrLn "Save cancelled"
loop env form
Just p -> do
let definitions = Map.toList $ Map.delete "!result" env
filepath = strip p
outputStrLn "Starting save..."
liftIO $ writeFile filepath ""
outputStrLn "File created..."
forM_ definitions $ \(name, value) -> do
let content = name ++ " = " ++ formatResult TreeCalculus value ++ "\n"
outputStrLn $ "Writing definition: " ++ name ++ " with length " ++ show (length content)
liftIO $ appendFile filepath content
outputStrLn $ "Saved " ++ show (length definitions) ++ " definitions to " ++ p
loop env form

View File

@ -1,6 +1,5 @@
module Research where module Research where
import Control.Monad.State
import Data.List (intercalate) import Data.List (intercalate)
import Data.Map (Map) import Data.Map (Map)
import Data.Text (Text, replace) import Data.Text (Text, replace)
@ -39,7 +38,6 @@ data LToken
| LAssign | LAssign
| LColon | LColon
| LDot | LDot
| LBackslash
| LOpenParen | LOpenParen
| LCloseParen | LCloseParen
| LOpenBracket | LOpenBracket
@ -55,15 +53,24 @@ data EvaluatedForm = TreeCalculus | FSL | AST | Ternary | Ascii | Decode
-- Environment containing previously evaluated TC terms -- Environment containing previously evaluated TC terms
type Env = Map.Map String T type Env = Map.Map String T
-- Tree Calculus Reduction -- Tree Calculus Reduction Rules
{-
The t operator is left associative.
1. t t a b -> a
2. t (t a) b c -> a c (b c)
3a. t (t a b) c t -> a
3b. t (t a b) c (t u) -> b u
3c. t (t a b) c (t u v) -> c u v
-}
apply :: T -> T -> T apply :: T -> T -> T
apply Leaf b = Stem b apply (Fork Leaf a) _ = a
apply (Stem a) b = Fork a b apply (Fork (Stem a) b) c = apply (apply a c) (apply b c)
apply (Fork Leaf a) _ = a apply (Fork (Fork a b) c) Leaf = a
apply (Fork (Stem a1) a2) b = apply (apply a1 b) (apply a2 b) apply (Fork (Fork a b) c) (Stem u) = apply b u
apply (Fork (Fork a1 a2) a3) Leaf = a1 apply (Fork (Fork a b) c) (Fork u v) = apply (apply c u) v
apply (Fork (Fork a1 a2) a3) (Stem u) = apply a2 u -- Left associative `t`
apply (Fork (Fork a1 a2) a3) (Fork u v) = apply (apply a3 u) v apply Leaf b = Stem b
apply (Stem a) b = Fork a b
-- Booleans -- Booleans
_false :: T _false :: T
@ -77,7 +84,7 @@ _not = Fork (Fork _true (Fork Leaf _false)) Leaf
-- Marshalling -- Marshalling
ofString :: String -> T ofString :: String -> T
ofString str = ofList (map ofNumber (map fromEnum str)) ofString str = ofList $ map (ofNumber . fromEnum) str
ofNumber :: Int -> T ofNumber :: Int -> T
ofNumber 0 = Leaf ofNumber 0 = Leaf
@ -87,8 +94,7 @@ ofNumber n =
(ofNumber (n `div` 2)) (ofNumber (n `div` 2))
ofList :: [T] -> T ofList :: [T] -> T
ofList [] = Leaf ofList = foldr Fork Leaf
ofList (x:xs) = Fork x (ofList xs)
toNumber :: T -> Either String Int toNumber :: T -> Either String Int
toNumber Leaf = Right 0 toNumber Leaf = Right 0
@ -126,7 +132,7 @@ toSimpleT s = T.unpack
$ replace "Fork" "t" $ replace "Fork" "t"
$ replace "Stem" "t" $ replace "Stem" "t"
$ replace "Leaf" "t" $ replace "Leaf" "t"
$ (T.pack s) $ T.pack s
toTernaryString :: T -> String toTernaryString :: T -> String
toTernaryString Leaf = "0" toTernaryString Leaf = "0"
@ -153,8 +159,18 @@ toAscii tree = go tree "" True
++ go right (prefix ++ (if isLast then " " else "| ")) True ++ go right (prefix ++ (if isLast then " " else "| ")) True
decodeResult :: T -> String decodeResult :: T -> String
decodeResult tc decodeResult Leaf = "t"
| Right num <- toNumber tc = show num decodeResult tc =
| Right str <- toString tc = "\"" ++ str ++ "\"" case (toString tc, toList tc, toNumber tc) of
| Right list <- toList tc = "[" ++ intercalate ", " (map decodeResult list) ++ "]" (Right s, _, _) | all isCommonChar s -> "\"" ++ s ++ "\""
| otherwise = formatResult TreeCalculus tc (_, _, Right n) -> show n
(_, Right xs@(_:_), _) -> "[" ++ intercalate ", " (map decodeResult xs) ++ "]"
(_, Right [], _) -> "[]"
_ -> formatResult TreeCalculus tc
where
isCommonChar c =
let n = fromEnum c
in (n >= 32 && n <= 126)
|| n == 9
|| n == 10
|| n == 13

View File

@ -34,6 +34,7 @@ tests = testGroup "Tricu Tests"
, fileEval , fileEval
, modules , modules
, demos , demos
, decoding
] ]
lexer :: TestTree lexer :: TestTree
@ -50,7 +51,22 @@ lexer = testGroup "Lexer Tests"
, testCase "Lex escaped characters in strings" $ do , testCase "Lex escaped characters in strings" $ do
let input = "\"hello\\nworld\"" let input = "\"hello\\nworld\""
expect = Right [LStringLiteral "hello\\nworld"] expect = Right [LStringLiteral "hello\nworld"]
runParser tricuLexer "" input @?= expect
, testCase "Lex multiple escaped characters in strings" $ do
let input = "\"tab:\\t newline:\\n quote:\\\" backslash:\\\\\""
expect = Right [LStringLiteral "tab:\t newline:\n quote:\" backslash:\\"]
runParser tricuLexer "" input @?= expect
, testCase "Lex escaped characters in string literals" $ do
let input = "x = \"line1\\nline2\\tindented\""
expect = Right [LIdentifier "x", LAssign, LStringLiteral "line1\nline2\tindented"]
runParser tricuLexer "" input @?= expect
, testCase "Lex empty string with escape sequence" $ do
let input = "\"\\\"\""
expect = Right [LStringLiteral "\""]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex mixed literals" $ do , testCase "Lex mixed literals" $ do
@ -86,7 +102,7 @@ parser = testGroup "Parser Tests"
Right _ -> assertFailure "Expected failure when trying to assign the value of T" Right _ -> assertFailure "Expected failure when trying to assign the value of T"
, testCase "Parse function definitions" $ do , testCase "Parse function definitions" $ do
let input = "x = (\\a b c : a)" let input = "x = (a b c : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a")))) expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
parseSingle input @?= expect parseSingle input @?= expect
@ -106,7 +122,7 @@ parser = testGroup "Parser Tests"
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse function with applications" $ do , testCase "Parse function with applications" $ do
let input = "f = (\\x : t x)" let input = "f = (x : t x)"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x"))) expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
parseSingle input @?= expect parseSingle input @?= expect
@ -148,22 +164,22 @@ parser = testGroup "Parser Tests"
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested parentheses in function body" $ do , testCase "Parse nested parentheses in function body" $ do
let input = "f = (\\x : t (t (t t)))" let input = "f = (x : t (t (t t)))"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf)))) expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse lambda abstractions" $ do , testCase "Parse lambda abstractions" $ do
let input = "(\\a : a)" let input = "(a : a)"
expect = (SLambda ["a"] (SVar "a")) expect = (SLambda ["a"] (SVar "a"))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse multiple arguments to lambda abstractions" $ do , testCase "Parse multiple arguments to lambda abstractions" $ do
let input = "x = (\\a b : a)" let input = "x = (a b : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a"))) expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Grouping T terms with parentheses in function application" $ do , testCase "Grouping T terms with parentheses in function application" $ do
let input = "x = (\\a : a)\nx (t)" let input = "x = (a : a)\nx (t)"
expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf] expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
parseTricu input @?= expect parseTricu input @?= expect
@ -258,7 +274,7 @@ simpleEvaluation = testGroup "Evaluation Tests"
, testCase "Apply identity to Boolean Not" $ do , testCase "Apply identity to Boolean Not" $ do
let not = "(t (t (t t) (t t t)) t)" let not = "(t (t (t t) (t t t)) t)"
let input = "x = (\\a : a)\nx " ++ not let input = "x = (a : a)\nx " ++ not
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
] ]
@ -266,81 +282,85 @@ simpleEvaluation = testGroup "Evaluation Tests"
lambdas :: TestTree lambdas :: TestTree
lambdas = testGroup "Lambda Evaluation Tests" lambdas = testGroup "Lambda Evaluation Tests"
[ testCase "Lambda Identity Function" $ do [ testCase "Lambda Identity Function" $ do
let input = "id = (\\x : x)\nid t" let input = "id = (x : x)\nid t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda Constant Function (K combinator)" $ do , testCase "Lambda Constant Function (K combinator)" $ do
let input = "k = (\\x y : x)\nk t (t t)" let input = "k = (x y : x)\nk t (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda Application with Variable" $ do , testCase "Lambda Application with Variable" $ do
let input = "id = (\\x : x)\nval = t t\nid val" let input = "id = (x : x)\nval = t t\nid val"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda Application with Multiple Arguments" $ do , testCase "Lambda Application with Multiple Arguments" $ do
let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)" let input = "apply = (f x y : f x y)\nk = (a b : a)\napply k t (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Nested Lambda Application" $ do , testCase "Nested Lambda Application" $ do
let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t" let input = "apply = (f x y : f x y)\nid = (x : x)\napply (f x : f x) id t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with a complex body" $ do , testCase "Lambda with a complex body" $ do
let input = "f = (\\x : t (t x))\nf t" let input = "f = (x : t (t x))\nf t"
runTricu input @?= "Stem (Stem Leaf)" runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda returning a function" $ do , testCase "Lambda returning a function" $ do
let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)" let input = "f = (x : (y : x))\ng = f t\ng (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with Shadowing" $ do , testCase "Lambda with Shadowing" $ do
let input = "f = (\\x : (\\x : x))\nf t (t t)" let input = "f = (x : (x : x))\nf t (t t)"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda returning another lambda" $ do , testCase "Lambda returning another lambda" $ do
let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)" let input = "k = (x : (y : x))\nk_app = k t\nk_app (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with free variables" $ do , testCase "Lambda with free variables" $ do
let input = "y = t t\nf = (\\x : y)\nf t" let input = "y = t t\nf = (x : y)\nf t"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "SKI Composition" $ do , testCase "SKI Composition" $ do
let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)" let input = "s = (x y z : x z (y z))\nk = (x y : x)\ni = (x : x)\ncomp = s k i\ncomp t (t t)"
runTricu input @?= "Stem (Stem Leaf)" runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda with multiple parameters and application" $ do , testCase "Lambda with multiple parameters and application" $ do
let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)" let input = "f = (a b c : t a b c)\nf t (t t) (t t t)"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda with nested application in the body" $ do , testCase "Lambda with nested application in the body" $ do
let input = "f = (\\x : t (t (t x)))\nf t" let input = "f = (x : t (t (t x)))\nf t"
runTricu input @?= "Stem (Stem (Stem Leaf))" runTricu input @?= "Stem (Stem (Stem Leaf))"
, testCase "Lambda returning a function and applying it" $ do , testCase "Lambda returning a function and applying it" $ do
let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)" let input = "f = (x : (y : t x y))\ng = f t\ng (t t)"
runTricu input @?= "Fork Leaf (Stem Leaf)" runTricu input @?= "Fork Leaf (Stem Leaf)"
, testCase "Lambda applying a variable" $ do , testCase "Lambda applying a variable" $ do
let input = "id = (\\x : x)\na = t t\nid a" let input = "id = (x : x)\na = t t\nid a"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Nested lambda abstractions in the same expression" $ do , testCase "Nested lambda abstractions in the same expression" $ do
let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t" let input = "f = (x : (y : x y))\ng = (z : z)\nf g t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with a string literal" $ do , testCase "Lambda applied to string literal" $ do
let input = "f = (\\x : x)\nf \"hello\"" let input = "f = (x : x)\nf \"hello\""
runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))" runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
, testCase "Lambda with an integer literal" $ do , testCase "Lambda applied to integer literal" $ do
let input = "f = (\\x : x)\nf 42" let input = "f = (x : x)\nf 42"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))" runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
, testCase "Lambda with a list literal" $ do , testCase "Lambda applied to list literal" $ do
let input = "f = (\\x : x)\nf [t (t t)]" let input = "f = (x : x)\nf [t (t t)]"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)" runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
, testCase "Lambda containing list literal" $ do
let input = "(a : [(a)]) 1"
runTricu input @?= "Fork (Fork (Stem Leaf) Leaf) Leaf"
] ]
providedLibraries :: TestTree providedLibraries :: TestTree
@ -414,7 +434,7 @@ providedLibraries = testGroup "Library Tests"
, testCase "List map" $ do , testCase "List map" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/list.tri"
let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))" let input = "head (tail (map (a : (t t t)) [(t) (t) (t)]))"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf result env @?= Fork Leaf Leaf
@ -518,3 +538,35 @@ demos = testGroup "Test provided demo functionality"
res <- liftIO $ evaluateFileResult "./demos/levelOrderTraversal.tri" res <- liftIO $ evaluateFileResult "./demos/levelOrderTraversal.tri"
decodeResult res @?= "\"\n1 \n2 3 \n4 5 6 7 \n8 11 10 9 12 \"" decodeResult res @?= "\"\n1 \n2 3 \n4 5 6 7 \n8 11 10 9 12 \""
] ]
decoding :: TestTree
decoding = testGroup "Decoding Tests"
[ testCase "Decode Leaf" $ do
decodeResult Leaf @?= "t"
, testCase "Decode list of non-ASCII numbers" $ do
let input = ofList [ofNumber 1, ofNumber 14, ofNumber 6]
decodeResult input @?= "[1, 14, 6]"
, testCase "Decode list of ASCII numbers as a string" $ do
let input = ofList [ofNumber 97, ofNumber 98, ofNumber 99]
decodeResult input @?= "\"abc\""
, testCase "Decode small number" $ do
decodeResult (ofNumber 42) @?= "42"
, testCase "Decode large number" $ do
decodeResult (ofNumber 9999) @?= "9999"
, testCase "Decode string in list" $ do
let input = ofList [ofString "hello", ofString "world"]
decodeResult input @?= "[\"hello\", \"world\"]"
, testCase "Decode mixed list with strings" $ do
let input = ofList [ofString "hello", ofNumber 42, ofString "world"]
decodeResult input @?= "[\"hello\", 42, \"world\"]"
, testCase "Decode nested lists with strings" $ do
let input = ofList [ofList [ofString "nested"], ofString "string"]
decodeResult input @?= "[[\"nested\"], \"string\"]"
]

View File

@ -1,9 +1,9 @@
-- This is a tricu comment! -- This is a tricu comment!
-- t (t t) (t (t t t)) -- t (t t) (t (t t t))
-- t (t t t) (t t) -- t (t t t) (t t)
-- x = (\a : a) -- x = (a : a)
main = t (t t) t -- Fork (Stem Leaf) Leaf main = t (t t) t -- Fork (Stem Leaf) Leaf
-- t t -- t t
-- x -- x
-- x = (\a : a) -- x = (a : a)
-- t -- t

View File

@ -1 +1 @@
main = (\x : x) t main = (x : x) t

View File

@ -1,2 +1,2 @@
x = map (\i : append "Successfully concatenated " i) [("two strings!")] x = map (i : append "Successfully concatenated " i) [("two strings!")]
main = equal? x [("Successfully concatenated two strings!")] main = equal? x [("Successfully concatenated two strings!")]

View File

@ -1,21 +1,21 @@
compose = \f g x : f (g x) compose = f g x : f (g x)
succ = y (\self : succ = y (self :
triage triage
1 1
t t
(triage (triage
(t (t t)) (t (t t))
(\_ tail : t t (self tail)) (_ tail : t t (self tail))
t)) t))
size = (\x : size = (x :
(y (\self x : (y (self x :
compose succ compose succ
(triage (triage
(\x : x) (x : x)
self self
(\x y : compose (self x) (self y)) (x y : compose (self x) (self y))
x)) x 0)) x)) x 0))
size size size size

View File

@ -1 +1 @@
head (map (\i : append "String " i) [("test!")]) head (map (i : append "String " i) [("test!")])

View File

@ -1 +1 @@
y = \x : x y = x : x

View File

@ -1,7 +1,7 @@
cabal-version: 1.12 cabal-version: 1.12
name: tricu name: tricu
version: 0.14.0 version: 0.18.1
description: A micro-language for exploring Tree Calculus description: A micro-language for exploring Tree Calculus
author: James Eversole author: James Eversole
maintainer: james@eversole.co maintainer: james@eversole.co
@ -32,6 +32,7 @@ executable tricu
, megaparsec , megaparsec
, mtl , mtl
, text , text
, transformers
other-modules: other-modules:
Eval Eval
FileEval FileEval
@ -63,6 +64,7 @@ test-suite tricu-tests
, tasty-hunit , tasty-hunit
, tasty-quickcheck , tasty-quickcheck
, text , text
, transformers
default-language: Haskell2010 default-language: Haskell2010
other-modules: other-modules:
Eval Eval