8 Commits

Author SHA1 Message Date
0cdc0bfc34 "size" function nodes down from 454 to 321 2025-08-07 20:08:59 -05:00
c36d963640 Update README to reflect completion of experiment 2025-05-29 13:39:44 -05:00
3717942589 Clean up and list SKI conversion fix 2025-04-24 12:14:38 -05:00
b8e2743103 Updates to demos 2025-04-16 14:23:53 -05:00
25bfe139e8 String escaping using backslash 2025-04-15 10:52:53 -05:00
f2beb86d8a Drop backslash from lambda definitions 2025-04-15 10:34:38 -05:00
5024a2be4c Revert flake.nix 2025-02-08 10:24:14 -06:00
fccee3e61c Static linking part 2
Some checks failed
Test, Build, and Release / test (push) Failing after 3h6m55s
Test, Build, and Release / build (push) Has been cancelled
2025-02-07 19:22:31 -06:00
24 changed files with 826 additions and 385 deletions

View File

@ -2,37 +2,31 @@
## Introduction
tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. It is fundamentally based on the application of [Tree Calculus](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf) terms, but minimal syntax sugar is included to provide a useful programming tool.
tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. It is fundamentally based on the application of [Tree Calculus](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf) terms, but minimal syntax sugar is included.
*tricu is under active development and you should expect breaking changes with every commit.*
*This experiment has concluded. tricu will see no further development or bugfixes.*
tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`.
## Features
## Acknowledgements
- Tree Calculus operator: `t`
- Assignments: `x = t t`
- Immutable definitions
- Lambda abstraction syntax: `id = (\a : a)`
- List, Number, and String literals: `[(2) ("Hello")]`
- Function application: `not (not false)`
- Higher order/first-class functions: `map (\a : append a "!") [("Hello")]`
- Intensionality blurs the distinction between functions and data (see REPL examples)
- Simple module system for code organization
Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog).
[treecalcul.us](https://treecalcul.us) is an excellent website with an intuitive Tree Calculus code playground created by [Johannes Bader](https://johannes-bader.com/) that introduced me to Tree Calculus.
## REPL examples
```
tricu < -- Anything after `--` on a single line is a comment
tricu < id = (\a : a) -- Lambda abstraction is eliminated to tree calculus terms
tricu < head (map (\i : append i " world!") [("Hello, ")])
tricu < id = (a : a) -- Lambda abstraction is eliminated to tree calculus terms
tricu < head (map (i : append i " world!") [("Hello, ")])
tricu > "Hello, world!"
tricu < id (head (map (\i : append i " world!") [("Hello, ")]))
tricu < id (head (map (i : append i " world!") [("Hello, ")]))
tricu > "Hello, world!"
tricu < -- Intensionality! We can inspect the structure of a function or data.
tricu < triage = (\a b c : t (t a b) c)
tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork")
tricu < triage = (a b c : t (t a b) c)
tricu < test = triage "Leaf" (z : "Stem") (a b : "Fork")
tricu < test (t t)
tricu > "Stem"
tricu < -- We can even convert a term back to source code (/demos/toSource.tri)
@ -55,9 +49,7 @@ tricu < !version -- Print tricu version
## Installation and Use
[Releases are available for Linux.](https://git.eversole.co/James/tricu/releases)
Or you can easily build and run this project using [Nix](https://nixos.org/download/).
You can easily build and run this project using [Nix](https://nixos.org/download/).
- Quick Start (REPL):
- `nix run git+https://git.eversole.co/James/tricu`
@ -93,15 +85,3 @@ tricu decode [OPTIONS]
-f --file=FILE Optional input file path to attempt decoding.
Defaults to stdin.
```
## Collaborating
I am happy to accept issue reports, pull requests, or questions about tricu [via email](mailto:james@eversole.co).
If you want to collaborate but don't want to email back-and-forth, please reach out via email once to let me know and I will provision a git.eversole.co account for you.
## Acknowledgements
Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog).
[treecalcul.us](https://treecalcul.us) is an excellent website with an intuitive Tree Calculus code playground created by [Johannes Bader](https://johannes-bader.com/) that introduced me to Tree Calculus.

View File

@ -11,20 +11,17 @@ demo_true = t t
not_TC? = t (t (t t) (t t t)) (t t (t t t))
-- /demos/toSource.tri contains an explanation of `triage`
demo_triage = \a b c : t (t a b) c
demo_matchBool = (\ot of : demo_triage
of
(\_ : ot)
(\_ _ : ot)
)
demo_triage = a b c : t (t a b) c
demo_matchBool = a b : demo_triage b (_ : a) (_ _ : a)
-- Lambda representation of the Boolean `not` function
not_Lambda? = demo_matchBool demo_false demo_true
-- Since tricu eliminates Lambda terms to SKI combinators, the tree form of many
-- As tricu eliminates Lambda terms to SKI combinators, the tree form of many
-- functions defined via Lambda terms are larger than the most efficient TC
-- representation. Between different languages that evaluate to tree calculus
-- terms, the exact implementation of Lambda elimination may differ and lead
-- to different tree representations even if they share extensional behavior.
-- representation possible. Between different languages that evaluate to tree
-- calculus terms, the exact implementation of Lambda elimination may differ
-- and lead to different trees even if they share extensional behavior.
-- Let's see if these are the same:
lambdaEqualsTC = equal? not_TC? not_Lambda?

View File

@ -18,47 +18,47 @@ main = exampleTwo
-- / / \
-- 4 5 6
label = \node : head node
label = node : head node
left = (\node : if (emptyList? node)
[]
(if (emptyList? (tail node))
[]
left = node : (if (emptyList? node)
[]
(if (emptyList? (tail node))
[]
(head (tail node))))
right = (\node : if (emptyList? node)
[]
(if (emptyList? (tail node))
[]
(if (emptyList? (tail (tail node)))
[]
right = node : (if (emptyList? node)
[]
(if (emptyList? (tail node))
[]
(if (emptyList? (tail (tail node)))
[]
(head (tail (tail node))))))
processLevel = y (\self queue : if (emptyList? queue)
[]
(pair (map label queue) (self (filter
(\node : not? (emptyList? node))
processLevel = y (self queue : if (emptyList? queue)
[]
(pair (map label queue) (self (filter
(node : not? (emptyList? node))
(append (map left queue) (map right queue))))))
levelOrderTraversal_ = \a : processLevel (t a t)
levelOrderTraversal_ = a : processLevel (t a t)
toLineString = y (\self levels : if (emptyList? levels)
""
(append
(append (map (\x : append x " ") (head levels)) "")
toLineString = y (self levels : if (emptyList? levels)
""
(append
(append (map (x : append x " ") (head levels)) "")
(if (emptyList? (tail levels)) "" (append (t (t 10 t) t) (self (tail levels))))))
levelOrderToString = \s : toLineString (levelOrderTraversal_ s)
levelOrderToString = s : toLineString (levelOrderTraversal_ s)
flatten = foldl (\acc x : append acc x) ""
flatten = foldl (acc x : append acc x) ""
levelOrderTraversal = \s : append (t 10 t) (flatten (levelOrderToString s))
levelOrderTraversal = s : append (t 10 t) (flatten (levelOrderToString s))
exampleOne = levelOrderTraversal [("1")
[("2") [("4") t t] t]
exampleOne = levelOrderTraversal [("1")
[("2") [("4") t t] t]
[("3") [("5") t t] [("6") t t]]]
exampleTwo = levelOrderTraversal [("1")
[("2") [("4") [("8") t t] [("9") t t]]
[("6") [("10") t t] [("12") t t]]]
exampleTwo = levelOrderTraversal [("1")
[("2") [("4") [("8") t t] [("9") t t]]
[("6") [("10") t t] [("12") t t]]]
[("3") [("5") [("11") t t] t] [("7") t t]]]

37
demos/patternMatching.tri Normal file
View File

@ -0,0 +1,37 @@
!import "../lib/patterns.tri" !Local
-- We can do conditional pattern matching by providing a list of lists, where
-- each sublist contains a boolean expression and a function to return if said
-- boolean expression evaluates to true.
value = 42
main = match value [[(equal? "Hello") (_ : ", world!")] [(equal? 42) (_ : "The answer.")]]
-- < main
-- > "The answer."
matchExample = (x : match x
[[(equal? 1) (_ : "one")]
[(equal? 2) (_ : "two")]
[(equal? 3) (_ : "three")]
[(equal? 4) (_ : "four")]
[(equal? 5) (_ : "five")]
[(equal? 6) (_ : "six")]
[(equal? 7) (_ : "seven")]
[(equal? 8) (_ : "eight")]
[(equal? 9) (_ : "nine")]
[(equal? 10) (_ : "ten")]
[ otherwise (_ : "I ran out of fingers!")]])
-- < matchExample 3
-- > "three"
-- < matchExample 5
-- > "five"
-- < matchExample 9
-- > "nine"
-- < matchExample 11
-- > "I ran out of fingers!"
-- < matchExample "three"
-- > "I ran out of fingers!"
-- < matchExample [("hello") ("world")]
-- > "I ran out of fingers!"

View File

@ -3,11 +3,9 @@
main = size size
size = (\x :
(y (\self x :
compose succ
(triage
(\x : x)
self
(\x y : compose (self x) (self y))
x)) x 0))
size = x : y (self x : compose succ (triage
id
self
(x y : compose (self x) (self y))
x)
) x 0

View File

@ -18,25 +18,25 @@ main = toSource not?
sourceLeaf = t (head "t")
-- Stem case
sourceStem = (\convert : (\a rest :
sourceStem = convert : (a rest :
t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t"
(t (head " ") -- Add a space.
(convert a -- Recursively convert the argument.
(t (head ")") rest)))))) -- Close with ")" and append the rest.
(t (head ")") rest))))) -- Close with ")" and append the rest.
-- Fork case
sourceFork = (\convert : (\a b rest :
sourceFork = convert : (a b rest :
t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t"
(t (head " ") -- Add a space.
(convert a -- Recursively convert the first arg.
(t (head " ") -- Add another space.
(convert b -- Recursively convert the second arg.
(t (head ")") rest)))))))) -- Close with ")" and append the rest.
(t (head ")") rest))))))) -- Close with ")" and append the rest.
-- Wrapper around triage
toSource_ = y (\self arg :
toSource_ = y (self arg :
triage
sourceLeaf -- `triage` "a" case, Leaf
(sourceStem self) -- `triage` "b" case, Stem
@ -44,7 +44,7 @@ toSource_ = y (\self arg :
arg) -- The term to be inspected
-- toSource takes a single TC term and returns a String
toSource = \v : toSource_ v ""
toSource = v : toSource_ v ""
exampleOne = toSource true -- OUT: "(t t)"
exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"

View File

@ -2,57 +2,46 @@
description = "tricu";
inputs = {
nixpkgs = {
url = "https://github.com/nh2/nixpkgs/archive/ede5282c487a1fd2de64303ba59adad6726f1225.tar.gz";
type = "tarball";
flake = false;
};
static-haskell-nix = {
url = "github:nh2/static-haskell-nix";
flake = false;
};
nixpkgs.url = "github:NixOS/nixpkgs";
flake-utils.url = "github:numtide/flake-utils";
};
outputs = { self, nixpkgs, static-haskell-nix }:
let
system = "x86_64-linux";
compiler = "ghc948";
packageName = "tricu";
outputs = { self, nixpkgs, flake-utils }:
flake-utils.lib.eachDefaultSystem (system:
let
pkgs = nixpkgs.legacyPackages.${system};
packageName = "tricu";
containerPackageName = "${packageName}-container";
overlay = self: super: {
haskell = super.haskell // {
packages = super.haskell.packages // {
${compiler} = super.haskell.packages.${compiler}.override {
overrides = final: prev: {
${packageName} = prev.callCabal2nix packageName ./. {};
};
};
};
customGHC = pkgs.haskellPackages.ghcWithPackages (hpkgs: with hpkgs; [
megaparsec
]);
haskellPackages = pkgs.haskellPackages;
enableSharedExecutables = false;
enableSharedLibraries = false;
tricu = pkgs.haskell.lib.justStaticExecutables self.packages.${system}.default;
in {
packages.${packageName} =
haskellPackages.callCabal2nix packageName self rec {};
packages.default = self.packages.${system}.${packageName};
defaultPackage = self.packages.${system}.default;
devShells.default = pkgs.mkShell {
buildInputs = with pkgs; [
haskellPackages.cabal-install
haskellPackages.ghc-events
haskellPackages.ghcid
customGHC
upx
];
inputsFrom = builtins.attrValues self.packages.${system};
};
};
devShell = self.devShells.${system}.default;
overlays = [overlay];
normalPkgs = import nixpkgs { inherit overlays system; };
survey = import "${static-haskell-nix}/survey" { inherit compiler normalPkgs; };
tricuStatic = survey.haskellPackages.${packageName};
in {
packages.${system}.default = tricuStatic;
devShells.default = normalPkgs.mkShell {
buildInputs = with normalPkgs; [
normalPkgs.haskellPackages.cabal-install
normalPkgs.haskellPackages.ghc-events
normalPkgs.haskellPackages.ghcid
normalPkgs.upx
];
inputsFrom = builtins.attrValues self.packages.${system};
};
devShell = self.devShells.${system}.default;
};
});
}

View File

@ -1,74 +1,74 @@
false = t
_ = t
true = t t
id = \a : a
const = \a b : a
id = a : a
const = a b : a
pair = t
if = \cond then else : t (t else (t t then)) t cond
if = cond then else : t (t else (t t then)) t cond
y = ((\mut wait fun : wait mut (\x : fun (wait mut x)))
(\x : x x)
(\a0 a1 a2 : t (t a0) (t t a2) a1))
y = ((mut wait fun : wait mut (x : fun (wait mut x)))
(x : x x)
(a0 a1 a2 : t (t a0) (t t a2) a1))
compose = \f g x : f (g x)
compose = f g x : f (g x)
triage = \leaf stem fork : t (t leaf stem) fork
test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork")
triage = leaf stem fork : t (t leaf stem) fork
test = triage "Leaf" (_ : "Stem") (_ _ : "Fork")
matchBool = (\ot of : triage
matchBool = (ot of : triage
of
(\_ : ot)
(\_ _ : ot)
(_ : ot)
(_ _ : ot)
)
lAnd = (triage
(\_ : false)
(\_ x : x)
(\_ _ x : x))
(_ : false)
(_ x : x)
(_ _ x : x))
lOr = (triage
(\x : x)
(\_ _ : true)
(\_ _ _ : true))
(x : x)
(_ _ : true)
(_ _ _ : true))
matchPair = \a : triage _ _ a
matchPair = a : triage _ _ a
not? = matchBool false true
and? = matchBool id (\_ : false)
and? = matchBool id (_ : false)
or? = (\x z :
or? = (x z :
matchBool
(matchBool true true z)
(matchBool true false z)
x)
xor? = (\x z :
xor? = (x z :
matchBool
(matchBool false true z)
(matchBool true false z)
x)
equal? = y (\self : triage
equal? = y (self : triage
(triage
true
(\_ : false)
(\_ _ : false))
(\ax :
(_ : false)
(_ _ : false))
(ax :
triage
false
(self ax)
(\_ _ : false))
(\ax ay :
(_ _ : false))
(ax ay :
triage
false
(\_ : false)
(\bx by : lAnd (self ax bx) (self ay by))))
(_ : false)
(bx by : lAnd (self ax bx) (self ay by))))
succ = y (\self :
succ = y (self :
triage
1
t
(triage
(t (t t))
(\_ tail : t t (self tail))
(_ tail : t t (self tail))
t))

View File

@ -1,68 +1,70 @@
!import "base.tri" !Local
matchList = \a b : triage a _ b
_ = t
emptyList? = matchList true (\_ _ : false)
head = matchList t (\head _ : head)
tail = matchList t (\_ tail : tail)
matchList = a b : triage a _ b
append = y (\self : matchList
(\k : k)
(\h r k : pair h (self r k)))
emptyList? = matchList true (_ _ : false)
head = matchList t (head _ : head)
tail = matchList t (_ tail : tail)
lExist? = y (\self x : matchList
append = y (self : matchList
(k : k)
(h r k : pair h (self r k)))
lExist? = y (self x : matchList
false
(\h z : or? (equal? x h) (self x z)))
(h z : or? (equal? x h) (self x z)))
map_ = y (\self :
map_ = y (self :
matchList
(\_ : t)
(\head tail f : pair (f head) (self tail f)))
map = \f l : map_ l f
(_ : t)
(head tail f : pair (f head) (self tail f)))
map = f l : map_ l f
filter_ = y (\self : matchList
(\_ : t)
(\head tail f : matchBool (t head) id (f head) (self tail f)))
filter = \f l : filter_ l f
filter_ = y (self : matchList
(_ : t)
(head tail f : matchBool (t head) id (f head) (self tail f)))
filter = f l : filter_ l f
foldl_ = y (\self f l x : matchList (\acc : acc) (\head tail acc : self f tail (f acc head)) l x)
foldl = \f x l : foldl_ f l x
foldl_ = y (self f l x : matchList (acc : acc) (head tail acc : self f tail (f acc head)) l x)
foldl = f x l : foldl_ f l x
foldr_ = y (\self x f l : matchList x (\head tail : f (self x f tail) head) l)
foldr = \f x l : foldr_ x f l
foldr_ = y (self x f l : matchList x (head tail : f (self x f tail) head) l)
foldr = f x l : foldr_ x f l
length = y (\self : matchList
length = y (self : matchList
0
(\_ tail : succ (self tail)))
(_ tail : succ (self tail)))
reverse = y (\self : matchList
reverse = y (self : matchList
t
(\head tail : append (self tail) (pair head t)))
(head tail : append (self tail) (pair head t)))
snoc = y (\self x : matchList
snoc = y (self x : matchList
(pair x t)
(\h z : pair h (self x z)))
(h z : pair h (self x z)))
count = y (\self x : matchList
count = y (self x : matchList
0
(\h z : matchBool
(h z : matchBool
(succ (self x z))
(self x z)
(equal? x h)))
last = y (\self : matchList
last = y (self : matchList
t
(\hd tl : matchBool
(hd tl : matchBool
hd
(self tl)
(emptyList? tl)))
all? = y (\self pred : matchList
all? = y (self pred : matchList
true
(\h z : and? (pred h) (self pred z)))
(h z : and? (pred h) (self pred z)))
any? = y (\self pred : matchList
any? = y (self pred : matchList
false
(\h z : or? (pred h) (self pred z)))
(h z : or? (pred h) (self pred z)))
intersect = \xs ys : filter (\x : lExist? x ys) xs
intersect = xs ys : filter (x : lExist? x ys) xs

View File

@ -1,36 +1,24 @@
!import "list.tri" !Local
!import "base.tri" !Local
!import "list.tri" List
match_ = y (\self value patterns :
match_ = y (self value patterns :
triage
t
(\_ : t)
(\pattern rest :
(_ : t)
(pattern rest :
triage
t
(\_ : t)
(\test result :
(_ : t)
(test result :
if (test value)
(result value)
(self value rest))
pattern)
patterns)
match = (\value patterns :
match_ value (map (\sublist :
pair (head sublist) (head (tail sublist)))
match = (value patterns :
match_ value (List.map (sublist :
pair (List.head sublist) (List.head (List.tail sublist)))
patterns))
otherwise = const (t t)
matchExample = (\x : match x
[[(equal? 1) (\_ : "one")]
[(equal? 2) (\_ : "two")]
[(equal? 3) (\_ : "three")]
[(equal? 4) (\_ : "four")]
[(equal? 5) (\_ : "five")]
[(equal? 6) (\_ : "six")]
[(equal? 7) (\_ : "seven")]
[(equal? 8) (\_ : "eight")]
[(equal? 9) (\_ : "nine")]
[(equal? 10) (\_ : "ten")]
[ otherwise (\_ : "I ran out of fingers!")]])

View File

@ -3,11 +3,30 @@ module Eval where
import Parser
import Research
import Data.List (partition, (\\))
import Data.Map (Map)
import Data.List (partition, (\\), elemIndex)
import Data.Map (Map)
import Data.Set (Set)
import qualified Data.Foldable as F
import qualified Data.Map as Map
import qualified Data.Set as Set
data DB
= BVar Int -- bound (0 = nearest binder)
| BFree String -- free/global
| BLam DB
| BApp DB DB
| BLeaf
| BStem DB
| BFork DB DB
| BStr String
| BInt Integer
| BList [DB]
| BEmpty
deriving (Eq, Show)
type Uses = [Bool]
evalSingle :: Env -> TricuAST -> Env
evalSingle env term
| SDef name [] body <- term
@ -62,59 +81,75 @@ evalAST env term
elimLambda :: TricuAST -> TricuAST
elimLambda = go
where
-- η-reduction
go (SLambda [v] (SApp f (SVar x)))
| v == x && not (isFree v f) = elimLambda f
-- Triage optimization
go (SLambda [a] (SLambda [b] (SLambda [c] body)))
| body == triageBody = _TRIAGE
go term
| etaReduction term = go (etaReduceResult term)
| triagePattern term = _TRI
| composePattern term = _B
| lambdaList term = go (lambdaListResult term)
| nestedLambda term = nestedLambdaResult term
| application term = applicationResult term
| otherwise = term
-- patterns (now DB-indexed where it matters)
etaReduction (SLambda [v] (SApp f (SVar x))) = v == x && not (usesBinder v f)
etaReduction _ = False
-- triage: \a b c -> TLeaf (TLeaf a b) c (checked in DB with a↦2, b↦1, c↦0)
triagePattern (SLambda [a] (SLambda [b] (SLambda [c] body))) =
toDB [c,b,a] body == triageBodyDB
triagePattern _ = False
-- compose: \f g x -> f (g x) (checked in DB with f↦2, g↦1, x↦0)
composePattern (SLambda [f] (SLambda [g] (SLambda [x] body))) =
toDB [x,g,f] body == composeBodyDB
composePattern _ = False
lambdaList (SLambda [_] (SList _)) = True
lambdaList _ = False
nestedLambda (SLambda (_:_) _) = True
nestedLambda _ = False
application (SApp _ _) = True
application _ = False
-- rewrites
etaReduceResult (SLambda [_] (SApp f _)) = f
lambdaListResult (SLambda [v] (SList xs)) =
SLambda [v] (foldr wrapTLeaf TLeaf xs)
where
triageBody =
SApp (SApp TLeaf (SApp (SApp TLeaf (SVar a)) (SVar b))) (SVar c)
-- Composition optimization
go (SLambda [f] (SLambda [g] (SLambda [x] body)))
| body == SApp (SVar f) (SApp (SVar g) (SVar x)) = _B
-- General elimination
go (SLambda [v] (SList xs))
= elimLambda (SLambda [v] (foldr wrapTLeaf TLeaf xs))
where wrapTLeaf m r = SApp (SApp TLeaf m) r
go (SLambda (v:vs) body)
| null vs = toSKI v (elimLambda body)
| otherwise = elimLambda (SLambda [v] (SLambda vs body))
go (SApp f g) = SApp (elimLambda f) (elimLambda g)
go x = x
wrapTLeaf m r = SApp (SApp TLeaf m) r
toSKI x (SVar y)
| x == y = _I
| otherwise = SApp _K (SVar y)
toSKI x t@(SApp n u)
| not (isFree x t) = SApp _K t
| otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u)
toSKI x t
| not (isFree x t) = SApp _K t
| otherwise = errorWithoutStackTrace "Unhandled toSKI conversion"
-- The key change: use DB bracket abstraction for the final parameter.
nestedLambdaResult (SLambda (v:vs) body)
| null vs =
let body' = go body
db = toDB [v] body'
in toSKIKiselyov db
| otherwise = go (SLambda [v] (SLambda vs body))
_S = parseSingle "t (t (t t t)) t"
_K = parseSingle "t t"
_I = parseSingle "t (t (t t)) t"
_B = parseSingle "t (t (t t (t (t (t t t)) t))) (t t)"
_TRIAGE = parseSingle "t (t (t t (t (t (t t t))))) t"
applicationResult (SApp f g) = SApp (go f) (go g)
-- combinators and special forms (unchanged)
_S = parseSingle "t (t (t t t)) t"
_K = parseSingle "t t"
_I = parseSingle "t (t (t t)) t"
_R = parseSingle "(t (t (t t (t (t (t (t (t (t (t t (t (t (t t t)) t))) (t (t (t t (t t))) (t (t (t t t)) t)))) (t t (t t))))))) (t t))"
_C = parseSingle "(t (t (t (t (t t (t (t (t t t)) t))) (t (t (t t (t t))) (t (t (t t t)) t)))) (t t (t t)))"
_B = parseSingle "t (t (t t (t (t (t t t)) t))) (t t)"
_T = SApp _C _I
_TRI = parseSingle "t (t (t t (t (t (t t t))))) t"
-- pattern bodies (kept for reference; checks are now DB-based)
triageBody a b c = SApp (SApp TLeaf (SApp (SApp TLeaf (SVar a)) (SVar b))) (SVar c)
composeBody f g x = SApp (SVar f) (SApp (SVar g) (SVar x))
isFree :: String -> TricuAST -> Bool
isFree x = Set.member x . freeVars
isFree x t = Set.member x (freeVars t)
freeVars :: TricuAST -> Set.Set String
freeVars (SVar v ) = Set.singleton v
freeVars (SInt _ ) = Set.empty
freeVars (SStr _ ) = Set.empty
freeVars (SList s ) = foldMap freeVars s
freeVars (SApp f a ) = freeVars f <> freeVars a
freeVars TLeaf = Set.empty
freeVars (SDef _ _ b) = freeVars b
freeVars (TStem t ) = freeVars t
freeVars (TFork l r ) = freeVars l <> freeVars r
freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v
freeVars _ = Set.empty
freeVars :: TricuAST -> Set String
freeVars = freeDBNames . toDB []
reorderDefs :: Env -> [TricuAST] -> [TricuAST]
reorderDefs env defs
@ -131,7 +166,7 @@ reorderDefs env defs
graph = buildDepGraph defsOnly
sortedDefs = sortDeps graph
defMap = Map.fromList [(name, def) | def@(SDef name _ _) <- defsOnly]
orderedDefs = map (\name -> defMap Map.! name) sortedDefs
orderedDefs = map (defMap Map.!) sortedDefs
freeVarsDefs = foldMap snd defsWithFreeVars
freeVarsOthers = foldMap freeVars others
@ -139,8 +174,8 @@ reorderDefs env defs
validNames = Set.fromList defNames `Set.union` Set.fromList (Map.keys env)
missingDeps = Set.toList (allFreeVars `Set.difference` validNames)
isDef (SDef _ _ _) = True
isDef _ = False
isDef SDef {} = True
isDef _ = False
buildDepGraph :: [TricuAST] -> Map.Map String (Set.Set String)
buildDepGraph topDefs
@ -195,3 +230,284 @@ mainResult :: Env -> T
mainResult r = case Map.lookup "main" r of
Just a -> a
Nothing -> errorWithoutStackTrace "No valid definition for `main` found."
-- Convert named TricuAST to De Bruijn form
toDB :: [String] -> TricuAST -> DB
toDB env = \case
SVar v -> maybe (BFree v) BVar (elemIndex v env)
SLambda vs b ->
let env' = reverse vs ++ env
body = toDB env' b
in foldr (\_ acc -> BLam acc) body vs
SApp f a -> BApp (toDB env f) (toDB env a)
TLeaf -> BLeaf
TStem t -> BStem (toDB env t)
TFork l r -> BFork (toDB env l) (toDB env r)
SStr s -> BStr s
SInt n -> BInt n
SList xs -> BList (map (toDB env) xs)
SEmpty -> BEmpty
SDef{} -> error "toDB: unexpected SDef at this stage"
SImport _ _ -> BEmpty
-- Does a term depend on the current binder (level 0)?
dependsOnLevel :: Int -> DB -> Bool
dependsOnLevel lvl = \case
BVar k -> k == lvl
BLam t -> dependsOnLevel (lvl + 1) t
BApp f a -> dependsOnLevel lvl f || dependsOnLevel lvl a
BStem t -> dependsOnLevel lvl t
BFork l r -> dependsOnLevel lvl l || dependsOnLevel lvl r
BList xs -> any (dependsOnLevel lvl) xs
_ -> False
-- Collect free *global* names (i.e., unbound)
freeDBNames :: DB -> Set String
freeDBNames = \case
BFree s -> Set.singleton s
BVar _ -> mempty
BLam t -> freeDBNames t
BApp f a -> freeDBNames f <> freeDBNames a
BLeaf -> mempty
BStem t -> freeDBNames t
BFork l r -> freeDBNames l <> freeDBNames r
BStr _ -> mempty
BInt _ -> mempty
BList xs -> foldMap freeDBNames xs
BEmpty -> mempty
-- Helper: “is the binder named v used in body?”
usesBinder :: String -> TricuAST -> Bool
usesBinder v body = dependsOnLevel 0 (toDB [v] body)
-- Expected DB bodies for the named special patterns (under env [a,b,c] -> indices 2,1,0)
triageBodyDB :: DB
triageBodyDB =
BApp (BApp BLeaf (BApp (BApp BLeaf (BVar 2)) (BVar 1))) (BVar 0)
composeBodyDB :: DB
composeBodyDB =
BApp (BVar 2) (BApp (BVar 1) (BVar 0))
-- Convert DB -> TricuAST for subterms that contain NO binders (no BLam, no BVar)
fromDBClosed :: DB -> TricuAST
fromDBClosed = \case
BFree s -> SVar s
BApp f a -> SApp (fromDBClosed f) (fromDBClosed a)
BLeaf -> TLeaf
BStem t -> TStem (fromDBClosed t)
BFork l r -> TFork (fromDBClosed l) (fromDBClosed r)
BStr s -> SStr s
BInt n -> SInt n
BList xs -> SList (map fromDBClosed xs)
BEmpty -> SEmpty
-- Anything bound would be a logic error if we call this correctly.
BLam _ -> error "fromDBClosed: unexpected BLam"
BVar _ -> error "fromDBClosed: unexpected bound variable"
-- DB-native bracket abstraction over the innermost binder (level 0).
-- This mirrors your old toSKI, but is purely index-driven.
toSKIDB :: DB -> TricuAST
toSKIDB t
| not (dependsOnLevel 0 t) = SApp _K (fromDBClosed t)
toSKIDB (BVar 0) = _I
toSKIDB (BApp n u) = SApp (SApp _S (toSKIDB n)) (toSKIDB u)
toSKIDB (BList xs) =
let anyUses = any (dependsOnLevel 0) xs
in if not anyUses
then SApp _K (SList (map fromDBClosed xs))
else SList (map toSKIDB xs)
toSKIDB other =
errorWithoutStackTrace $ "Unhandled toSKI(DB) conversion: " ++ show other
app2 :: TricuAST -> TricuAST -> TricuAST
app2 f x = SApp f x
app3 :: TricuAST -> TricuAST -> TricuAST -> TricuAST
app3 f x y = SApp (SApp f x) y
-- Core converter that *does not* perform the λ-step; it just returns (Γ, d).
-- Supported shapes: variables, applications, closed literals (Leaf/Int/Str/Empty),
-- closed lists. For anything where the binder occurs under structural nodes
-- (Stem/Fork/List-with-use), we deliberately bail so the caller can fall back.
kisConv :: DB -> Either String (Uses, TricuAST)
kisConv = \case
BVar 0 -> Right ([True], _I)
BVar n | n > 0 -> do
(g,d) <- kisConv (BVar (n - 1))
Right (False:g, d)
BApp e1 e2 -> do
(g1,d1) <- kisConv e1
(g2,d2) <- kisConv e2
let g = zipWithDefault False (||) g1 g2 -- <— propagate Γ outside (#)
d = kisHash (g1,d1) (g2,d2) -- <— (#) yields only the term
Right (g, d)
-- Treat closed constants as free 'combinator leaves' (no binder use).
BLeaf -> Right ([], TLeaf)
BStr s -> Right ([], SStr s)
BInt n -> Right ([], SInt n)
BEmpty -> Right ([], SEmpty)
-- Closed list: allowed. If binder is used anywhere, we punt to fallback.
BList xs
| any (dependsOnLevel 0) xs -> Left "List with binder use: fallback"
| otherwise -> Right ([], SList (map fromDBClosed xs))
-- For structural nodes, only allow if *closed* wrt the binder.
BStem t
| dependsOnLevel 0 t -> Left "Stem with binder use: fallback"
| otherwise -> Right ([], TStem (fromDBClosed t))
BFork l r
| dependsOnLevel 0 l || dependsOnLevel 0 r -> Left "Fork with binder use: fallback"
| otherwise -> Right ([], TFork (fromDBClosed l) (fromDBClosed r))
-- We shouldnt see BLam under elim; treat as unsupported so we fallback.
BLam _ -> Left "Nested lambda under body: fallback"
BFree s -> Right ([], SVar s)
-- Application combiner with K-optimization (lazy weakening).
-- Mirrors Lynns 'optK' rules: choose among S, B, C, R based on leading flags.
-- η-aware (#) with K-optimization (adapted from TS kiselyov_eta)
kisHash :: (Uses, TricuAST) -> (Uses, TricuAST) -> TricuAST
kisHash (g1, d1) (g2, d2) =
case g1 of
[] -> case g2 of
[] -> SApp d1 d2
True:gs2 -> if isId2 (g2, d2)
then d1
else kisHash ([], SApp _B d1) (gs2, d2)
False:gs2 -> kisHash ([], d1) (gs2, d2)
True:gs1 -> case g2 of
[] -> if isId2 (g1, d1)
then SApp _T d2
else kisHash ([], SApp _R d2) (gs1, d1)
_ ->
if isId2 (g1, d1) && case g2 of { False:_ -> True; _ -> False }
then kisHash ([], _T) (tail g2, d2)
else
-- NEW: coalesce the longest run of identical head pairs and apply bulk op once
let ((h1, h2), count) = headPairRun g1 g2
g1' = drop count g1
g2' = drop count g2
in case (h1, h2) of
(False, False) ->
kisHash (g1', d1) (g2', d2)
(False, True) ->
let d1' = kisHash ([], bulkB count) (g1', d1)
in kisHash (g1', d1') (g2', d2)
(True, False) ->
let d1' = kisHash ([], bulkC count) (g1', d1)
in kisHash (g1', d1') (g2', d2)
(True, True) ->
let d1' = kisHash ([], bulkS count) (g1', d1)
in kisHash (g1', d1') (g2', d2)
False:gs1 -> case g2 of
[] -> kisHash (gs1, d1) ([], d2)
_ ->
if isId2 (g1, d1) && case g2 of { False:_ -> True; _ -> False }
then kisHash ([], _T) (tail g2, d2)
else case g2 of
True:gs2 ->
let d1' = kisHash ([], _B) (gs1, d1)
in kisHash (gs1, d1') (gs2, d2)
False:gs2 ->
kisHash (gs1, d1) (gs2, d2)
where
tail (_:xs) = xs
tail [] = []
toSKIKiselyov :: DB -> TricuAST
toSKIKiselyov body =
case kisConv body of
Right ([], d) -> SApp _K d
Right (True:_ , d) -> d
Right (False:g, d) -> kisHash ([], _K) (g, d) -- no snd
Left _ -> starSKIBCOpEtaDB body -- was: toSKIDB body
zipWithDefault :: a -> (a -> a -> a) -> [a] -> [a] -> [a]
zipWithDefault d f [] ys = map (f d) ys
zipWithDefault d f xs [] = map (\x -> f x d) xs
zipWithDefault d f (x:xs) (y:ys) = f x y : zipWithDefault d f xs ys
isNode :: TricuAST -> Bool
isNode t = case t of
TLeaf -> True
_ -> False
isApp2 :: TricuAST -> Maybe (TricuAST, TricuAST)
isApp2 (SApp a b) = Just (a, b)
isApp2 _ = Nothing
isKop :: TricuAST -> Bool
isKop t = case isApp2 t of
Just (a,b) -> isNode a && isNode b
_ -> False
-- detects the two canonical I-shapes in the tree calculus:
-- △ (△ (△ △)) x OR △ (△ △ △) △
isId :: TricuAST -> Bool
isId t = case isApp2 t of
Just (ab, c) -> case isApp2 ab of
Just (a, b) | isNode a ->
case isApp2 b of
Just (b1, b2) ->
(isNode b1 && isKop b2) ||
(isKop b1 && isNode b2 && isNode c)
_ -> False
_ -> False
_ -> False
-- head-True only, tail empty, and term is identity
isId2 :: (Uses, TricuAST) -> Bool
isId2 (True:[], t) = isId t
isId2 _ = False
-- Bulk helpers built from SKI (no new primitives)
bPrime :: TricuAST
bPrime = SApp _B _B -- B' = B B
cPrime :: TricuAST
cPrime = SApp (SApp _B (SApp _B _C)) _B -- C' = B (B C) B
sPrime :: TricuAST
sPrime = SApp (SApp _B (SApp _B _S)) _B -- S' = B (B S) B
bulkB :: Int -> TricuAST
bulkB n | n <= 1 = _B
| otherwise = SApp bPrime (bulkB (n - 1))
bulkC :: Int -> TricuAST
bulkC n | n <= 1 = _C
| otherwise = SApp cPrime (bulkC (n - 1))
bulkS :: Int -> TricuAST
bulkS n | n <= 1 = _S
| otherwise = SApp sPrime (bulkS (n - 1))
-- Count how many leading pairs (a,b) repeat at the head of zip g1 g2
headPairRun :: [Bool] -> [Bool] -> ((Bool, Bool), Int)
headPairRun g1 g2 =
case zip g1 g2 of
[] -> ((False, False), 0)
(h:rest) -> (h, 1 + length (takeWhile (== h) rest))
-- DB-native star_skibc_op_eta (adapted from strategies.mts), binder = level 0
starSKIBCOpEtaDB :: DB -> TricuAST
starSKIBCOpEtaDB t
| not (dependsOnLevel 0 t) = SApp _K (fromDBClosed t)
starSKIBCOpEtaDB (BVar 0) = _I
starSKIBCOpEtaDB (BApp e1 e2)
-- if binder not in right: use C
| not (dependsOnLevel 0 e2)
= SApp (SApp _C (starSKIBCOpEtaDB e1)) (fromDBClosed e2)
-- if binder not in left:
| not (dependsOnLevel 0 e1)
= case e2 of
-- η case: \x. f x ==> f
BVar 0 -> fromDBClosed e1
_ -> SApp (SApp _B (fromDBClosed e1)) (starSKIBCOpEtaDB e2)
-- otherwise: S
| otherwise
= SApp (SApp _S (starSKIBCOpEtaDB e1)) (starSKIBCOpEtaDB e2)
-- Structural nodes with binder underneath: fall back to plain SKI (rare)
starSKIBCOpEtaDB other = toSKIDB other

View File

@ -41,7 +41,6 @@ tricuLexer = do
, try stringLiteral
, assign
, colon
, backslash
, openParen
, closeParen
, openBracket
@ -94,9 +93,6 @@ assign = char '=' $> LAssign
colon :: Lexer LToken
colon = char ':' $> LColon
backslash :: Lexer LToken
backslash = char '\\' $> LBackslash
openParen :: Lexer LToken
openParen = char '(' $> LOpenParen
@ -126,7 +122,22 @@ integerLiteral = do
stringLiteral :: Lexer LToken
stringLiteral = do
char '"'
content <- many (noneOf ['"'])
char '"' --"
content <- manyTill Lexer.charLiteral (char '"')
return (LStringLiteral content)
charLiteral :: Lexer Char
charLiteral = escapedChar <|> normalChar
where
normalChar = noneOf ['"', '\\']
escapedChar = do
void $ char '\\'
c <- oneOf ['n', 't', 'r', 'f', 'b', '\\', '"', '\'']
return $ case c of
'n' -> '\n'
't' -> '\t'
'r' -> '\r'
'f' -> '\f'
'b' -> '\b'
'\\' -> '\\'
'"' -> '"'
'\'' -> '\''

View File

@ -63,18 +63,17 @@ main = do
case args of
Repl -> do
putStrLn "Welcome to the tricu REPL"
putStrLn "You can exit with `CTRL+D` or the `!exit` command.`"
putStrLn "You may exit with `CTRL+D` or the `!exit` command."
putStrLn "Try typing `!` with tab completion for more commands."
repl Map.empty
Evaluate { file = filePaths, form = form } -> do
result <- case filePaths of
[] -> do
t <- getContents
pure $ runTricu t
[] -> runTricuT <$> getContents
(filePath:restFilePaths) -> do
initialEnv <- evaluateFile filePath
finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths
pure $ mainResult finalEnv
let fRes = formatResult form result
let fRes = formatT form result
putStr fRes
TDecode { file = filePaths } -> do
value <- case filePaths of
@ -82,8 +81,48 @@ main = do
(filePath:_) -> readFile filePath
putStrLn $ decodeResult $ result $ evalTricu Map.empty $ parseTricu value
runTricu :: String -> T
runTricu input =
-- Simple interfaces
runTricu :: String -> String
runTricu = formatT TreeCalculus . runTricuT
runTricuT :: String -> T
runTricuT input =
let asts = parseTricu input
finalEnv = evalTricu Map.empty asts
in result finalEnv
runTricuEnv :: Env -> String -> String
runTricuEnv env = formatT TreeCalculus . runTricuTEnv env
runTricuTEnv :: Env -> String -> T
runTricuTEnv env input =
let asts = parseTricu input
finalEnv = evalTricu env asts
in result finalEnv
runTricuWithEnvT :: String -> (Env, T)
runTricuWithEnvT input =
let asts = parseTricu input
finalEnv = evalTricu Map.empty asts
in (finalEnv, result finalEnv)
runTricuWithEnv :: String -> (Env, String)
runTricuWithEnv input =
let asts = parseTricu input
finalEnv = evalTricu Map.empty asts
res = result finalEnv
in (finalEnv, formatT TreeCalculus res)
runTricuEnvWithEnvT :: Env -> String -> (Env, T)
runTricuEnvWithEnvT env input =
let asts = parseTricu input
finalEnv = evalTricu env asts
in (finalEnv, result finalEnv)
runTricuEnvWithEnv :: Env -> String -> (Env, String)
runTricuEnvWithEnv env input =
let asts = parseTricu input
finalEnv = evalTricu env asts
res = result finalEnv
in (finalEnv, formatT TreeCalculus res)

View File

@ -130,7 +130,6 @@ parseFunctionM = do
parseLambdaM :: ParserM TricuAST
parseLambdaM = do
let ident = (\case LIdentifier _ -> True; _ -> False)
_ <- satisfyM (== LBackslash)
params <- some (satisfyM ident)
_ <- satisfyM (== LColon)
scnParserM
@ -145,11 +144,11 @@ parseLambdaExpressionM = choice
parseAtomicLambdaM :: ParserM TricuAST
parseAtomicLambdaM = choice
[ parseVarM
[ try parseLambdaM
, parseVarM
, parseTreeLeafM
, parseLiteralM
, parseListLiteralM
, try parseLambdaM
, between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM
]
@ -205,7 +204,8 @@ parseTreeLeafOrParenthesizedM = choice
parseAtomicM :: ParserM TricuAST
parseAtomicM = choice
[ parseVarM
[ try parseLambdaM
, parseVarM
, parseTreeLeafM
, parseListLiteralM
, parseGroupedM

View File

@ -6,23 +6,22 @@ import Lexer
import Parser
import Research
import Control.Exception (IOException, SomeException, catch, displayException)
import Control.Exception (IOException, SomeException, catch
, displayException)
import Control.Monad (forM_)
import Control.Monad.IO.Class (liftIO)
import Control.Monad.Catch (handle, MonadCatch)
import Control.Monad.IO.Class (liftIO)
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.Maybe (MaybeT(..), runMaybeT)
import Data.Char (isSpace, isUpper)
import Data.List ( dropWhile
, dropWhileEnd
, isPrefixOf)
import System.Console.Haskeline
import Paths_tricu (version)
import Data.List (dropWhile, dropWhileEnd, isPrefixOf)
import Data.Version (showVersion)
import qualified Data.Text as T
import qualified Data.Text.IO as T
import Paths_tricu (version)
import System.Console.Haskeline
import qualified Data.Map as Map
import qualified Data.Text as T
import qualified Data.Text.IO as T
repl :: Env -> IO ()
repl env = runInputT settings (withInterrupt (loop env Decode))
@ -153,7 +152,7 @@ repl env = runInputT settings (withInterrupt (loop env Decode))
newEnv = evalTricu env asts
case Map.lookup "!result" newEnv of
Just r -> do
putStrLn $ "tricu > " ++ formatResult form r
putStrLn $ "tricu > " ++ formatT form r
Nothing -> pure ()
return newEnv
@ -183,7 +182,7 @@ repl env = runInputT settings (withInterrupt (loop env Decode))
liftIO $ writeFile filepath ""
outputStrLn "File created..."
forM_ definitions $ \(name, value) -> do
let content = name ++ " = " ++ formatResult TreeCalculus value ++ "\n"
let content = name ++ " = " ++ formatT TreeCalculus value ++ "\n"
outputStrLn $ "Writing definition: " ++ name ++ " with length " ++ show (length content)
liftIO $ appendFile filepath content
outputStrLn $ "Saved " ++ show (length definitions) ++ " definitions to " ++ p

View File

@ -15,7 +15,7 @@ data T = Leaf | Stem T | Fork T T
-- Abstract Syntax Tree for tricu
data TricuAST
= SVar String
| SInt Int
| SInt Integer
| SStr String
| SList [TricuAST]
| SDef String [String] TricuAST
@ -33,12 +33,11 @@ data LToken
= LKeywordT
| LIdentifier String
| LNamespace String
| LIntegerLiteral Int
| LIntegerLiteral Integer
| LStringLiteral String
| LAssign
| LColon
| LDot
| LBackslash
| LOpenParen
| LCloseParen
| LOpenBracket
@ -85,9 +84,9 @@ _not = Fork (Fork _true (Fork Leaf _false)) Leaf
-- Marshalling
ofString :: String -> T
ofString str = ofList $ map (ofNumber . fromEnum) str
ofString str = ofList $ map (ofNumber . toInteger . fromEnum) str
ofNumber :: Int -> T
ofNumber :: Integer -> T
ofNumber 0 = Leaf
ofNumber n =
Fork
@ -97,7 +96,7 @@ ofNumber n =
ofList :: [T] -> T
ofList = foldr Fork Leaf
toNumber :: T -> Either String Int
toNumber :: T -> Either String Integer
toNumber Leaf = Right 0
toNumber (Fork Leaf rest) = case toNumber rest of
Right n -> Right (2 * n)
@ -109,7 +108,7 @@ toNumber _ = Left "Invalid Tree Calculus number"
toString :: T -> Either String String
toString tc = case toList tc of
Right list -> traverse (fmap toEnum . toNumber) list
Right list -> traverse (fmap (toEnum . fromInteger) . toNumber) list
Left err -> Left "Invalid Tree Calculus string"
toList :: T -> Either String [T]
@ -120,13 +119,13 @@ toList (Fork x rest) = case toList rest of
toList _ = Left "Invalid Tree Calculus list"
-- Outputs
formatResult :: EvaluatedForm -> T -> String
formatResult TreeCalculus = toSimpleT . show
formatResult FSL = show
formatResult AST = show . toAST
formatResult Ternary = toTernaryString
formatResult Ascii = toAscii
formatResult Decode = decodeResult
formatT :: EvaluatedForm -> T -> String
formatT TreeCalculus = toSimpleT . show
formatT FSL = show
formatT AST = show . toAST
formatT Ternary = toTernaryString
formatT Ascii = toAscii
formatT Decode = decodeResult
toSimpleT :: String -> String
toSimpleT s = T.unpack
@ -167,7 +166,7 @@ decodeResult tc =
(_, _, Right n) -> show n
(_, Right xs@(_:_), _) -> "[" ++ intercalate ", " (map decodeResult xs) ++ "]"
(_, Right [], _) -> "[]"
_ -> formatResult TreeCalculus tc
_ -> formatT TreeCalculus tc
where
isCommonChar c =
let n = fromEnum c

View File

@ -21,8 +21,8 @@ import qualified Data.Set as Set
main :: IO ()
main = defaultMain tests
runTricu :: String -> String
runTricu s = show $ result (evalTricu Map.empty $ parseTricu s)
tricuTestString :: String -> String
tricuTestString s = show $ result (evalTricu Map.empty $ parseTricu s)
tests :: TestTree
tests = testGroup "Tricu Tests"
@ -35,6 +35,8 @@ tests = testGroup "Tricu Tests"
, modules
, demos
, decoding
, elimLambdaSingle
, stressElimLambda
]
lexer :: TestTree
@ -51,7 +53,22 @@ lexer = testGroup "Lexer Tests"
, testCase "Lex escaped characters in strings" $ do
let input = "\"hello\\nworld\""
expect = Right [LStringLiteral "hello\\nworld"]
expect = Right [LStringLiteral "hello\nworld"]
runParser tricuLexer "" input @?= expect
, testCase "Lex multiple escaped characters in strings" $ do
let input = "\"tab:\\t newline:\\n quote:\\\" backslash:\\\\\""
expect = Right [LStringLiteral "tab:\t newline:\n quote:\" backslash:\\"]
runParser tricuLexer "" input @?= expect
, testCase "Lex escaped characters in string literals" $ do
let input = "x = \"line1\\nline2\\tindented\""
expect = Right [LIdentifier "x", LAssign, LStringLiteral "line1\nline2\tindented"]
runParser tricuLexer "" input @?= expect
, testCase "Lex empty string with escape sequence" $ do
let input = "\"\\\"\""
expect = Right [LStringLiteral "\""]
runParser tricuLexer "" input @?= expect
, testCase "Lex mixed literals" $ do
@ -87,7 +104,7 @@ parser = testGroup "Parser Tests"
Right _ -> assertFailure "Expected failure when trying to assign the value of T"
, testCase "Parse function definitions" $ do
let input = "x = (\\a b c : a)"
let input = "x = (a b c : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
parseSingle input @?= expect
@ -107,7 +124,7 @@ parser = testGroup "Parser Tests"
parseSingle input @?= expect
, testCase "Parse function with applications" $ do
let input = "f = (\\x : t x)"
let input = "f = (x : t x)"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
parseSingle input @?= expect
@ -149,22 +166,22 @@ parser = testGroup "Parser Tests"
parseSingle input @?= expect
, testCase "Parse nested parentheses in function body" $ do
let input = "f = (\\x : t (t (t t)))"
let input = "f = (x : t (t (t t)))"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
parseSingle input @?= expect
, testCase "Parse lambda abstractions" $ do
let input = "(\\a : a)"
let input = "(a : a)"
expect = (SLambda ["a"] (SVar "a"))
parseSingle input @?= expect
, testCase "Parse multiple arguments to lambda abstractions" $ do
let input = "x = (\\a b : a)"
let input = "x = (a b : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
parseSingle input @?= expect
, testCase "Grouping T terms with parentheses in function application" $ do
let input = "x = (\\a : a)\nx (t)"
let input = "x = (a : a)\nx (t)"
expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
parseTricu input @?= expect
@ -251,7 +268,7 @@ simpleEvaluation = testGroup "Evaluation Tests"
, testCase "Immutable definitions" $ do
let input = "x = t t\nx = t\nx"
env = evalTricu Map.empty (parseTricu input)
result <- try (evaluate (runTricu input)) :: IO (Either SomeException String)
result <- try (evaluate (tricuTestString input)) :: IO (Either SomeException String)
case result of
Left _ -> return ()
Right _ -> assertFailure "Expected evaluation error"
@ -259,7 +276,7 @@ simpleEvaluation = testGroup "Evaluation Tests"
, testCase "Apply identity to Boolean Not" $ do
let not = "(t (t (t t) (t t t)) t)"
let input = "x = (\\a : a)\nx " ++ not
let input = "x = (a : a)\nx " ++ not
env = evalTricu Map.empty (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
]
@ -267,85 +284,85 @@ simpleEvaluation = testGroup "Evaluation Tests"
lambdas :: TestTree
lambdas = testGroup "Lambda Evaluation Tests"
[ testCase "Lambda Identity Function" $ do
let input = "id = (\\x : x)\nid t"
runTricu input @?= "Leaf"
let input = "id = (x : x)\nid t"
tricuTestString input @?= "Leaf"
, testCase "Lambda Constant Function (K combinator)" $ do
let input = "k = (\\x y : x)\nk t (t t)"
runTricu input @?= "Leaf"
let input = "k = (x y : x)\nk t (t t)"
tricuTestString input @?= "Leaf"
, testCase "Lambda Application with Variable" $ do
let input = "id = (\\x : x)\nval = t t\nid val"
runTricu input @?= "Stem Leaf"
let input = "id = (x : x)\nval = t t\nid val"
tricuTestString input @?= "Stem Leaf"
, testCase "Lambda Application with Multiple Arguments" $ do
let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)"
runTricu input @?= "Leaf"
let input = "apply = (f x y : f x y)\nk = (a b : a)\napply k t (t t)"
tricuTestString input @?= "Leaf"
, testCase "Nested Lambda Application" $ do
let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t"
runTricu input @?= "Leaf"
let input = "apply = (f x y : f x y)\nid = (x : x)\napply (f x : f x) id t"
tricuTestString input @?= "Leaf"
, testCase "Lambda with a complex body" $ do
let input = "f = (\\x : t (t x))\nf t"
runTricu input @?= "Stem (Stem Leaf)"
let input = "f = (x : t (t x))\nf t"
tricuTestString input @?= "Stem (Stem Leaf)"
, testCase "Lambda returning a function" $ do
let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)"
runTricu input @?= "Leaf"
let input = "f = (x : (y : x))\ng = f t\ng (t t)"
tricuTestString input @?= "Leaf"
, testCase "Lambda with Shadowing" $ do
let input = "f = (\\x : (\\x : x))\nf t (t t)"
runTricu input @?= "Stem Leaf"
let input = "f = (x : (x : x))\nf t (t t)"
tricuTestString input @?= "Stem Leaf"
, testCase "Lambda returning another lambda" $ do
let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)"
runTricu input @?= "Leaf"
let input = "k = (x : (y : x))\nk_app = k t\nk_app (t t)"
tricuTestString input @?= "Leaf"
, testCase "Lambda with free variables" $ do
let input = "y = t t\nf = (\\x : y)\nf t"
runTricu input @?= "Stem Leaf"
let input = "y = t t\nf = (x : y)\nf t"
tricuTestString input @?= "Stem Leaf"
, testCase "SKI Composition" $ do
let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)"
runTricu input @?= "Stem (Stem Leaf)"
let input = "s = (x y z : x z (y z))\nk = (x y : x)\ni = (x : x)\ncomp = s k i\ncomp t (t t)"
tricuTestString input @?= "Stem (Stem Leaf)"
, testCase "Lambda with multiple parameters and application" $ do
let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)"
runTricu input @?= "Stem Leaf"
let input = "f = (a b c : t a b c)\nf t (t t) (t t t)"
tricuTestString input @?= "Stem Leaf"
, testCase "Lambda with nested application in the body" $ do
let input = "f = (\\x : t (t (t x)))\nf t"
runTricu input @?= "Stem (Stem (Stem Leaf))"
let input = "f = (x : t (t (t x)))\nf t"
tricuTestString input @?= "Stem (Stem (Stem Leaf))"
, testCase "Lambda returning a function and applying it" $ do
let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)"
runTricu input @?= "Fork Leaf (Stem Leaf)"
let input = "f = (x : (y : t x y))\ng = f t\ng (t t)"
tricuTestString input @?= "Fork Leaf (Stem Leaf)"
, testCase "Lambda applying a variable" $ do
let input = "id = (\\x : x)\na = t t\nid a"
runTricu input @?= "Stem Leaf"
let input = "id = (x : x)\na = t t\nid a"
tricuTestString input @?= "Stem Leaf"
, testCase "Nested lambda abstractions in the same expression" $ do
let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t"
runTricu input @?= "Leaf"
let input = "f = (x : (y : x y))\ng = (z : z)\nf g t"
tricuTestString input @?= "Leaf"
, testCase "Lambda applied to string literal" $ do
let input = "f = (\\x : x)\nf \"hello\""
runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
let input = "f = (x : x)\nf \"hello\""
tricuTestString input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
, testCase "Lambda applied to integer literal" $ do
let input = "f = (\\x : x)\nf 42"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
let input = "f = (x : x)\nf 42"
tricuTestString input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
, testCase "Lambda applied to list literal" $ do
let input = "f = (\\x : x)\nf [t (t t)]"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
let input = "f = (x : x)\nf [t (t t)]"
tricuTestString input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
, testCase "Lambda containing list literal" $ do
let input = "(\\a : [(a)]) 1"
runTricu input @?= "Fork (Fork (Stem Leaf) Leaf) Leaf"
let input = "(a : [(a)]) 1"
tricuTestString input @?= "Fork (Fork (Stem Leaf) Leaf) Leaf"
]
providedLibraries :: TestTree
@ -419,7 +436,7 @@ providedLibraries = testGroup "Library Tests"
, testCase "List map" $ do
library <- evaluateFile "./lib/list.tri"
let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))"
let input = "head (tail (map (a : (t t t)) [(t) (t) (t)]))"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf
@ -518,7 +535,7 @@ demos = testGroup "Test provided demo functionality"
decodeResult res @?= "\"(t (t (t t) (t t t)) (t t (t t t)))\""
, testCase "Determining the size of functions" $ do
res <- liftIO $ evaluateFileResult "./demos/size.tri"
decodeResult res @?= "454"
decodeResult res @?= "321"
, testCase "Level Order Traversal demo" $ do
res <- liftIO $ evaluateFileResult "./demos/levelOrderTraversal.tri"
decodeResult res @?= "\"\n1 \n2 3 \n4 5 6 7 \n8 11 10 9 12 \""
@ -554,4 +571,73 @@ decoding = testGroup "Decoding Tests"
, testCase "Decode nested lists with strings" $ do
let input = ofList [ofList [ofString "nested"], ofString "string"]
decodeResult input @?= "[[\"nested\"], \"string\"]"
]
]
elimLambdaSingle :: TestTree
elimLambdaSingle = testCase "elimLambda preserves eval, fires eta, and SDef binds" $ do
-- 1) eta reduction, purely structural and parsed from source
let [etaIn] = parseTricu "x : f x"
[fRef ] = parseTricu "f"
elimLambda etaIn @?= fRef
-- 2) SDef binds its own name and parameters
let [defFXY] = parseTricu "f x y : f x"
fv = freeVars defFXY
assertBool "f should be bound in SDef" ("f" `Set.notMember` fv)
assertBool "x should be bound in SDef" ("x" `Set.notMember` fv)
assertBool "y should be bound in SDef" ("y" `Set.notMember` fv)
-- 3) semantics preserved on a small program that exercises compose and triage
let src =
unlines
[ "false = t"
, "_ = t"
, "true = t t"
, "id = a : a"
, "const = a b : a"
, "compose = f g x : f (g x)"
, "triage = leaf stem fork : t (t leaf stem) fork"
, "test = triage \"Leaf\" (_ : \"Stem\") (_ _ : \"Fork\")"
, "main = compose id id test"
]
prog = parseTricu src
progElim = map elimLambda prog
evalBefore = result (evalTricu Map.empty prog)
evalAfter = result (evalTricu Map.empty progElim)
evalAfter @?= evalBefore
stressElimLambda :: TestTree
stressElimLambda = testCase "stress elimLambda on wide list under deep curried lambda" $ do
let numVars = 200
numBody = 800
vars = [ "x" ++ show i | i <- [1..numVars] ]
body = "(" ++ unwords (replicate numBody "t") ++ ")"
etaOne = "h : f h"
etaTwo = "k : id k"
defId = "id = a : a"
lambda = unwords vars ++ " : " ++ body
src = unlines
[ defId
, etaOne
, "compose = f g x : f (g x)"
, "f = t t"
, etaTwo
, lambda
, "main = compose id id (" ++ head vars ++ " : f " ++ head vars ++ ")"
]
prog = parseTricu src
let out = map elimLambda prog
let noLambda term = case term of
SLambda _ _ -> False
SApp f g -> noLambda f && noLambda g
SList xs -> all noLambda xs
TFork l r -> noLambda l && noLambda r
TStem u -> noLambda u
_ -> True
assertBool "all lambdas eliminated" (all noLambda out)
let before = result (evalTricu Map.empty prog)
after = result (evalTricu Map.empty out)
after @?= before

View File

@ -1,9 +1,9 @@
-- This is a tricu comment!
-- t (t t) (t (t t t))
-- t (t t t) (t t)
-- x = (\a : a)
-- x = (a : a)
main = t (t t) t -- Fork (Stem Leaf) Leaf
-- t t
-- x
-- x = (\a : a)
-- x = (a : a)
-- t

View File

@ -1 +1 @@
main = (\x : x) t
main = (x : x) t

View File

@ -1,2 +1,2 @@
x = map (\i : append "Successfully concatenated " i) [("two strings!")]
x = map (i : append "Successfully concatenated " i) [("two strings!")]
main = equal? x [("Successfully concatenated two strings!")]

View File

@ -1,21 +1,21 @@
compose = \f g x : f (g x)
compose = f g x : f (g x)
succ = y (\self :
succ = y (self :
triage
1
t
(triage
(t (t t))
(\_ tail : t t (self tail))
(_ tail : t t (self tail))
t))
size = (\x :
(y (\self x :
size = (x :
(y (self x :
compose succ
(triage
(\x : x)
(x : x)
self
(\x y : compose (self x) (self y))
(x y : compose (self x) (self y))
x)) x 0))
size size

View File

@ -1 +1 @@
head (map (\i : append "String " i) [("test!")])
head (map (i : append "String " i) [("test!")])

View File

@ -1 +1 @@
y = \x : x
y = x : x

View File

@ -1,7 +1,7 @@
cabal-version: 1.12
name: tricu
version: 0.18.0
version: 0.19.0
description: A micro-language for exploring Tree Calculus
author: James Eversole
maintainer: james@eversole.co