Compare commits

...

2 Commits

Author SHA1 Message Date
25bfe139e8 String escaping using backslash 2025-04-15 10:52:53 -05:00
f2beb86d8a Drop backslash from lambda definitions 2025-04-15 10:34:38 -05:00
18 changed files with 214 additions and 190 deletions

View File

@ -11,12 +11,11 @@ tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)
## Features ## Features
- Tree Calculus operator: `t` - Tree Calculus operator: `t`
- Assignments: `x = t t` - Immutable definitions: `x = t t`
- Immutable definitions - Lambda abstraction: `id = (a : a)`
- Lambda abstraction syntax: `id = (\a : a)`
- List, Number, and String literals: `[(2) ("Hello")]` - List, Number, and String literals: `[(2) ("Hello")]`
- Function application: `not (not false)` - Function application: `not (not false)`
- Higher order/first-class functions: `map (\a : append a "!") [("Hello")]` - Higher order/first-class functions: `map (a : append a "!") [("Hello")]`
- Intensionality blurs the distinction between functions and data (see REPL examples) - Intensionality blurs the distinction between functions and data (see REPL examples)
- Simple module system for code organization - Simple module system for code organization
@ -24,15 +23,15 @@ tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)
``` ```
tricu < -- Anything after `--` on a single line is a comment tricu < -- Anything after `--` on a single line is a comment
tricu < id = (\a : a) -- Lambda abstraction is eliminated to tree calculus terms tricu < id = (a : a) -- Lambda abstraction is eliminated to tree calculus terms
tricu < head (map (\i : append i " world!") [("Hello, ")]) tricu < head (map (i : append i " world!") [("Hello, ")])
tricu > "Hello, world!" tricu > "Hello, world!"
tricu < id (head (map (\i : append i " world!") [("Hello, ")])) tricu < id (head (map (i : append i " world!") [("Hello, ")]))
tricu > "Hello, world!" tricu > "Hello, world!"
tricu < -- Intensionality! We can inspect the structure of a function or data. tricu < -- Intensionality! We can inspect the structure of a function or data.
tricu < triage = (\a b c : t (t a b) c) tricu < triage = (a b c : t (t a b) c)
tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork") tricu < test = triage "Leaf" (z : "Stem") (a b : "Fork")
tricu < test (t t) tricu < test (t t)
tricu > "Stem" tricu > "Stem"
tricu < -- We can even convert a term back to source code (/demos/toSource.tri) tricu < -- We can even convert a term back to source code (/demos/toSource.tri)

View File

@ -11,11 +11,11 @@ demo_true = t t
not_TC? = t (t (t t) (t t t)) (t t (t t t)) not_TC? = t (t (t t) (t t t)) (t t (t t t))
-- /demos/toSource.tri contains an explanation of `triage` -- /demos/toSource.tri contains an explanation of `triage`
demo_triage = \a b c : t (t a b) c demo_triage = a b c : t (t a b) c
demo_matchBool = (\ot of : demo_triage demo_matchBool = (ot of : demo_triage
of of
(\_ : ot) (_ : ot)
(\_ _ : ot) (_ _ : ot)
) )
-- Lambda representation of the Boolean `not` function -- Lambda representation of the Boolean `not` function
not_Lambda? = demo_matchBool demo_false demo_true not_Lambda? = demo_matchBool demo_false demo_true

View File

@ -18,15 +18,15 @@ main = exampleTwo
-- / / \ -- / / \
-- 4 5 6 -- 4 5 6
label = \node : head node label = node : head node
left = (\node : if (emptyList? node) left = (node : if (emptyList? node)
[] []
(if (emptyList? (tail node)) (if (emptyList? (tail node))
[] []
(head (tail node)))) (head (tail node))))
right = (\node : if (emptyList? node) right = (node : if (emptyList? node)
[] []
(if (emptyList? (tail node)) (if (emptyList? (tail node))
[] []
@ -34,25 +34,25 @@ right = (\node : if (emptyList? node)
[] []
(head (tail (tail node)))))) (head (tail (tail node))))))
processLevel = y (\self queue : if (emptyList? queue) processLevel = y (self queue : if (emptyList? queue)
[] []
(pair (map label queue) (self (filter (pair (map label queue) (self (filter
(\node : not? (emptyList? node)) (node : not? (emptyList? node))
(append (map left queue) (map right queue)))))) (append (map left queue) (map right queue))))))
levelOrderTraversal_ = \a : processLevel (t a t) levelOrderTraversal_ = a : processLevel (t a t)
toLineString = y (\self levels : if (emptyList? levels) toLineString = y (self levels : if (emptyList? levels)
"" ""
(append (append
(append (map (\x : append x " ") (head levels)) "") (append (map (x : append x " ") (head levels)) "")
(if (emptyList? (tail levels)) "" (append (t (t 10 t) t) (self (tail levels)))))) (if (emptyList? (tail levels)) "" (append (t (t 10 t) t) (self (tail levels))))))
levelOrderToString = \s : toLineString (levelOrderTraversal_ s) levelOrderToString = s : toLineString (levelOrderTraversal_ s)
flatten = foldl (\acc x : append acc x) "" flatten = foldl (acc x : append acc x) ""
levelOrderTraversal = \s : append (t 10 t) (flatten (levelOrderToString s)) levelOrderTraversal = s : append (t 10 t) (flatten (levelOrderToString s))
exampleOne = levelOrderTraversal [("1") exampleOne = levelOrderTraversal [("1")
[("2") [("4") t t] t] [("2") [("4") t t] t]

View File

@ -3,11 +3,11 @@
main = size size main = size size
size = (\x : size = (x :
(y (\self x : (y (self x :
compose succ compose succ
(triage (triage
(\x : x) (x : x)
self self
(\x y : compose (self x) (self y)) (x y : compose (self x) (self y))
x)) x 0)) x)) x 0))

View File

@ -18,7 +18,7 @@ main = toSource not?
sourceLeaf = t (head "t") sourceLeaf = t (head "t")
-- Stem case -- Stem case
sourceStem = (\convert : (\a rest : sourceStem = (convert : (a rest :
t (head "(") -- Start with a left parenthesis "(". t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t" (t (head "t") -- Add a "t"
(t (head " ") -- Add a space. (t (head " ") -- Add a space.
@ -26,7 +26,7 @@ sourceStem = (\convert : (\a rest :
(t (head ")") rest)))))) -- Close with ")" and append the rest. (t (head ")") rest)))))) -- Close with ")" and append the rest.
-- Fork case -- Fork case
sourceFork = (\convert : (\a b rest : sourceFork = (convert : (a b rest :
t (head "(") -- Start with a left parenthesis "(". t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t" (t (head "t") -- Add a "t"
(t (head " ") -- Add a space. (t (head " ") -- Add a space.
@ -36,7 +36,7 @@ sourceFork = (\convert : (\a b rest :
(t (head ")") rest)))))))) -- Close with ")" and append the rest. (t (head ")") rest)))))))) -- Close with ")" and append the rest.
-- Wrapper around triage -- Wrapper around triage
toSource_ = y (\self arg : toSource_ = y (self arg :
triage triage
sourceLeaf -- `triage` "a" case, Leaf sourceLeaf -- `triage` "a" case, Leaf
(sourceStem self) -- `triage` "b" case, Stem (sourceStem self) -- `triage` "b" case, Stem
@ -44,7 +44,7 @@ toSource_ = y (\self arg :
arg) -- The term to be inspected arg) -- The term to be inspected
-- toSource takes a single TC term and returns a String -- toSource takes a single TC term and returns a String
toSource = \v : toSource_ v "" toSource = v : toSource_ v ""
exampleOne = toSource true -- OUT: "(t t)" exampleOne = toSource true -- OUT: "(t t)"
exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))" exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"

View File

@ -1,74 +1,74 @@
false = t false = t
_ = t _ = t
true = t t true = t t
id = \a : a id = a : a
const = \a b : a const = a b : a
pair = t pair = t
if = \cond then else : t (t else (t t then)) t cond if = cond then else : t (t else (t t then)) t cond
y = ((\mut wait fun : wait mut (\x : fun (wait mut x))) y = ((mut wait fun : wait mut (x : fun (wait mut x)))
(\x : x x) (x : x x)
(\a0 a1 a2 : t (t a0) (t t a2) a1)) (a0 a1 a2 : t (t a0) (t t a2) a1))
compose = \f g x : f (g x) compose = f g x : f (g x)
triage = \leaf stem fork : t (t leaf stem) fork triage = leaf stem fork : t (t leaf stem) fork
test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork") test = triage "Leaf" (_ : "Stem") (_ _ : "Fork")
matchBool = (\ot of : triage matchBool = (ot of : triage
of of
(\_ : ot) (_ : ot)
(\_ _ : ot) (_ _ : ot)
) )
lAnd = (triage lAnd = (triage
(\_ : false) (_ : false)
(\_ x : x) (_ x : x)
(\_ _ x : x)) (_ _ x : x))
lOr = (triage lOr = (triage
(\x : x) (x : x)
(\_ _ : true) (_ _ : true)
(\_ _ _ : true)) (_ _ _ : true))
matchPair = \a : triage _ _ a matchPair = a : triage _ _ a
not? = matchBool false true not? = matchBool false true
and? = matchBool id (\_ : false) and? = matchBool id (_ : false)
or? = (\x z : or? = (x z :
matchBool matchBool
(matchBool true true z) (matchBool true true z)
(matchBool true false z) (matchBool true false z)
x) x)
xor? = (\x z : xor? = (x z :
matchBool matchBool
(matchBool false true z) (matchBool false true z)
(matchBool true false z) (matchBool true false z)
x) x)
equal? = y (\self : triage equal? = y (self : triage
(triage (triage
true true
(\_ : false) (_ : false)
(\_ _ : false)) (_ _ : false))
(\ax : (ax :
triage triage
false false
(self ax) (self ax)
(\_ _ : false)) (_ _ : false))
(\ax ay : (ax ay :
triage triage
false false
(\_ : false) (_ : false)
(\bx by : lAnd (self ax bx) (self ay by)))) (bx by : lAnd (self ax bx) (self ay by))))
succ = y (\self : succ = y (self :
triage triage
1 1
t t
(triage (triage
(t (t t)) (t (t t))
(\_ tail : t t (self tail)) (_ tail : t t (self tail))
t)) t))

View File

@ -1,68 +1,68 @@
!import "base.tri" !Local !import "base.tri" !Local
matchList = \a b : triage a _ b matchList = a b : triage a _ b
emptyList? = matchList true (\_ _ : false) emptyList? = matchList true (_ _ : false)
head = matchList t (\head _ : head) head = matchList t (head _ : head)
tail = matchList t (\_ tail : tail) tail = matchList t (_ tail : tail)
append = y (\self : matchList append = y (self : matchList
(\k : k) (k : k)
(\h r k : pair h (self r k))) (h r k : pair h (self r k)))
lExist? = y (\self x : matchList lExist? = y (self x : matchList
false false
(\h z : or? (equal? x h) (self x z))) (h z : or? (equal? x h) (self x z)))
map_ = y (\self : map_ = y (self :
matchList matchList
(\_ : t) (_ : t)
(\head tail f : pair (f head) (self tail f))) (head tail f : pair (f head) (self tail f)))
map = \f l : map_ l f map = f l : map_ l f
filter_ = y (\self : matchList filter_ = y (self : matchList
(\_ : t) (_ : t)
(\head tail f : matchBool (t head) id (f head) (self tail f))) (head tail f : matchBool (t head) id (f head) (self tail f)))
filter = \f l : filter_ l f filter = f l : filter_ l f
foldl_ = y (\self f l x : matchList (\acc : acc) (\head tail acc : self f tail (f acc head)) l x) foldl_ = y (self f l x : matchList (acc : acc) (head tail acc : self f tail (f acc head)) l x)
foldl = \f x l : foldl_ f l x foldl = f x l : foldl_ f l x
foldr_ = y (\self x f l : matchList x (\head tail : f (self x f tail) head) l) foldr_ = y (self x f l : matchList x (head tail : f (self x f tail) head) l)
foldr = \f x l : foldr_ x f l foldr = f x l : foldr_ x f l
length = y (\self : matchList length = y (self : matchList
0 0
(\_ tail : succ (self tail))) (_ tail : succ (self tail)))
reverse = y (\self : matchList reverse = y (self : matchList
t t
(\head tail : append (self tail) (pair head t))) (head tail : append (self tail) (pair head t)))
snoc = y (\self x : matchList snoc = y (self x : matchList
(pair x t) (pair x t)
(\h z : pair h (self x z))) (h z : pair h (self x z)))
count = y (\self x : matchList count = y (self x : matchList
0 0
(\h z : matchBool (h z : matchBool
(succ (self x z)) (succ (self x z))
(self x z) (self x z)
(equal? x h))) (equal? x h)))
last = y (\self : matchList last = y (self : matchList
t t
(\hd tl : matchBool (hd tl : matchBool
hd hd
(self tl) (self tl)
(emptyList? tl))) (emptyList? tl)))
all? = y (\self pred : matchList all? = y (self pred : matchList
true true
(\h z : and? (pred h) (self pred z))) (h z : and? (pred h) (self pred z)))
any? = y (\self pred : matchList any? = y (self pred : matchList
false false
(\h z : or? (pred h) (self pred z))) (h z : or? (pred h) (self pred z)))
intersect = \xs ys : filter (\x : lExist? x ys) xs intersect = xs ys : filter (x : lExist? x ys) xs

View File

@ -1,36 +1,36 @@
!import "list.tri" !Local !import "list.tri" !Local
match_ = y (\self value patterns : match_ = y (self value patterns :
triage triage
t t
(\_ : t) (_ : t)
(\pattern rest : (pattern rest :
triage triage
t t
(\_ : t) (_ : t)
(\test result : (test result :
if (test value) if (test value)
(result value) (result value)
(self value rest)) (self value rest))
pattern) pattern)
patterns) patterns)
match = (\value patterns : match = (value patterns :
match_ value (map (\sublist : match_ value (map (sublist :
pair (head sublist) (head (tail sublist))) pair (head sublist) (head (tail sublist)))
patterns)) patterns))
otherwise = const (t t) otherwise = const (t t)
matchExample = (\x : match x matchExample = (x : match x
[[(equal? 1) (\_ : "one")] [[(equal? 1) (_ : "one")]
[(equal? 2) (\_ : "two")] [(equal? 2) (_ : "two")]
[(equal? 3) (\_ : "three")] [(equal? 3) (_ : "three")]
[(equal? 4) (\_ : "four")] [(equal? 4) (_ : "four")]
[(equal? 5) (\_ : "five")] [(equal? 5) (_ : "five")]
[(equal? 6) (\_ : "six")] [(equal? 6) (_ : "six")]
[(equal? 7) (\_ : "seven")] [(equal? 7) (_ : "seven")]
[(equal? 8) (\_ : "eight")] [(equal? 8) (_ : "eight")]
[(equal? 9) (\_ : "nine")] [(equal? 9) (_ : "nine")]
[(equal? 10) (\_ : "ten")] [(equal? 10) (_ : "ten")]
[ otherwise (\_ : "I ran out of fingers!")]]) [ otherwise (_ : "I ran out of fingers!")]])

View File

@ -41,7 +41,6 @@ tricuLexer = do
, try stringLiteral , try stringLiteral
, assign , assign
, colon , colon
, backslash
, openParen , openParen
, closeParen , closeParen
, openBracket , openBracket
@ -94,9 +93,6 @@ assign = char '=' $> LAssign
colon :: Lexer LToken colon :: Lexer LToken
colon = char ':' $> LColon colon = char ':' $> LColon
backslash :: Lexer LToken
backslash = char '\\' $> LBackslash
openParen :: Lexer LToken openParen :: Lexer LToken
openParen = char '(' $> LOpenParen openParen = char '(' $> LOpenParen
@ -126,7 +122,22 @@ integerLiteral = do
stringLiteral :: Lexer LToken stringLiteral :: Lexer LToken
stringLiteral = do stringLiteral = do
char '"' char '"'
content <- many (noneOf ['"']) content <- manyTill Lexer.charLiteral (char '"')
char '"' --"
return (LStringLiteral content) return (LStringLiteral content)
charLiteral :: Lexer Char
charLiteral = escapedChar <|> normalChar
where
normalChar = noneOf ['"', '\\']
escapedChar = do
void $ char '\\'
c <- oneOf ['n', 't', 'r', 'f', 'b', '\\', '"', '\'']
return $ case c of
'n' -> '\n'
't' -> '\t'
'r' -> '\r'
'f' -> '\f'
'b' -> '\b'
'\\' -> '\\'
'"' -> '"'
'\'' -> '\''

View File

@ -130,7 +130,6 @@ parseFunctionM = do
parseLambdaM :: ParserM TricuAST parseLambdaM :: ParserM TricuAST
parseLambdaM = do parseLambdaM = do
let ident = (\case LIdentifier _ -> True; _ -> False) let ident = (\case LIdentifier _ -> True; _ -> False)
_ <- satisfyM (== LBackslash)
params <- some (satisfyM ident) params <- some (satisfyM ident)
_ <- satisfyM (== LColon) _ <- satisfyM (== LColon)
scnParserM scnParserM
@ -145,11 +144,11 @@ parseLambdaExpressionM = choice
parseAtomicLambdaM :: ParserM TricuAST parseAtomicLambdaM :: ParserM TricuAST
parseAtomicLambdaM = choice parseAtomicLambdaM = choice
[ parseVarM [ try parseLambdaM
, parseVarM
, parseTreeLeafM , parseTreeLeafM
, parseLiteralM , parseLiteralM
, parseListLiteralM , parseListLiteralM
, try parseLambdaM
, between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM , between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM
] ]
@ -205,7 +204,8 @@ parseTreeLeafOrParenthesizedM = choice
parseAtomicM :: ParserM TricuAST parseAtomicM :: ParserM TricuAST
parseAtomicM = choice parseAtomicM = choice
[ parseVarM [ try parseLambdaM
, parseVarM
, parseTreeLeafM , parseTreeLeafM
, parseListLiteralM , parseListLiteralM
, parseGroupedM , parseGroupedM

View File

@ -38,7 +38,6 @@ data LToken
| LAssign | LAssign
| LColon | LColon
| LDot | LDot
| LBackslash
| LOpenParen | LOpenParen
| LCloseParen | LCloseParen
| LOpenBracket | LOpenBracket

View File

@ -51,7 +51,22 @@ lexer = testGroup "Lexer Tests"
, testCase "Lex escaped characters in strings" $ do , testCase "Lex escaped characters in strings" $ do
let input = "\"hello\\nworld\"" let input = "\"hello\\nworld\""
expect = Right [LStringLiteral "hello\\nworld"] expect = Right [LStringLiteral "hello\nworld"]
runParser tricuLexer "" input @?= expect
, testCase "Lex multiple escaped characters in strings" $ do
let input = "\"tab:\\t newline:\\n quote:\\\" backslash:\\\\\""
expect = Right [LStringLiteral "tab:\t newline:\n quote:\" backslash:\\"]
runParser tricuLexer "" input @?= expect
, testCase "Lex escaped characters in string literals" $ do
let input = "x = \"line1\\nline2\\tindented\""
expect = Right [LIdentifier "x", LAssign, LStringLiteral "line1\nline2\tindented"]
runParser tricuLexer "" input @?= expect
, testCase "Lex empty string with escape sequence" $ do
let input = "\"\\\"\""
expect = Right [LStringLiteral "\""]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex mixed literals" $ do , testCase "Lex mixed literals" $ do
@ -87,7 +102,7 @@ parser = testGroup "Parser Tests"
Right _ -> assertFailure "Expected failure when trying to assign the value of T" Right _ -> assertFailure "Expected failure when trying to assign the value of T"
, testCase "Parse function definitions" $ do , testCase "Parse function definitions" $ do
let input = "x = (\\a b c : a)" let input = "x = (a b c : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a")))) expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
parseSingle input @?= expect parseSingle input @?= expect
@ -107,7 +122,7 @@ parser = testGroup "Parser Tests"
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse function with applications" $ do , testCase "Parse function with applications" $ do
let input = "f = (\\x : t x)" let input = "f = (x : t x)"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x"))) expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
parseSingle input @?= expect parseSingle input @?= expect
@ -149,22 +164,22 @@ parser = testGroup "Parser Tests"
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested parentheses in function body" $ do , testCase "Parse nested parentheses in function body" $ do
let input = "f = (\\x : t (t (t t)))" let input = "f = (x : t (t (t t)))"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf)))) expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse lambda abstractions" $ do , testCase "Parse lambda abstractions" $ do
let input = "(\\a : a)" let input = "(a : a)"
expect = (SLambda ["a"] (SVar "a")) expect = (SLambda ["a"] (SVar "a"))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse multiple arguments to lambda abstractions" $ do , testCase "Parse multiple arguments to lambda abstractions" $ do
let input = "x = (\\a b : a)" let input = "x = (a b : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a"))) expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Grouping T terms with parentheses in function application" $ do , testCase "Grouping T terms with parentheses in function application" $ do
let input = "x = (\\a : a)\nx (t)" let input = "x = (a : a)\nx (t)"
expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf] expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
parseTricu input @?= expect parseTricu input @?= expect
@ -259,7 +274,7 @@ simpleEvaluation = testGroup "Evaluation Tests"
, testCase "Apply identity to Boolean Not" $ do , testCase "Apply identity to Boolean Not" $ do
let not = "(t (t (t t) (t t t)) t)" let not = "(t (t (t t) (t t t)) t)"
let input = "x = (\\a : a)\nx " ++ not let input = "x = (a : a)\nx " ++ not
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
] ]
@ -267,84 +282,84 @@ simpleEvaluation = testGroup "Evaluation Tests"
lambdas :: TestTree lambdas :: TestTree
lambdas = testGroup "Lambda Evaluation Tests" lambdas = testGroup "Lambda Evaluation Tests"
[ testCase "Lambda Identity Function" $ do [ testCase "Lambda Identity Function" $ do
let input = "id = (\\x : x)\nid t" let input = "id = (x : x)\nid t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda Constant Function (K combinator)" $ do , testCase "Lambda Constant Function (K combinator)" $ do
let input = "k = (\\x y : x)\nk t (t t)" let input = "k = (x y : x)\nk t (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda Application with Variable" $ do , testCase "Lambda Application with Variable" $ do
let input = "id = (\\x : x)\nval = t t\nid val" let input = "id = (x : x)\nval = t t\nid val"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda Application with Multiple Arguments" $ do , testCase "Lambda Application with Multiple Arguments" $ do
let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)" let input = "apply = (f x y : f x y)\nk = (a b : a)\napply k t (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Nested Lambda Application" $ do , testCase "Nested Lambda Application" $ do
let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t" let input = "apply = (f x y : f x y)\nid = (x : x)\napply (f x : f x) id t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with a complex body" $ do , testCase "Lambda with a complex body" $ do
let input = "f = (\\x : t (t x))\nf t" let input = "f = (x : t (t x))\nf t"
runTricu input @?= "Stem (Stem Leaf)" runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda returning a function" $ do , testCase "Lambda returning a function" $ do
let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)" let input = "f = (x : (y : x))\ng = f t\ng (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with Shadowing" $ do , testCase "Lambda with Shadowing" $ do
let input = "f = (\\x : (\\x : x))\nf t (t t)" let input = "f = (x : (x : x))\nf t (t t)"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda returning another lambda" $ do , testCase "Lambda returning another lambda" $ do
let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)" let input = "k = (x : (y : x))\nk_app = k t\nk_app (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with free variables" $ do , testCase "Lambda with free variables" $ do
let input = "y = t t\nf = (\\x : y)\nf t" let input = "y = t t\nf = (x : y)\nf t"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "SKI Composition" $ do , testCase "SKI Composition" $ do
let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)" let input = "s = (x y z : x z (y z))\nk = (x y : x)\ni = (x : x)\ncomp = s k i\ncomp t (t t)"
runTricu input @?= "Stem (Stem Leaf)" runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda with multiple parameters and application" $ do , testCase "Lambda with multiple parameters and application" $ do
let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)" let input = "f = (a b c : t a b c)\nf t (t t) (t t t)"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda with nested application in the body" $ do , testCase "Lambda with nested application in the body" $ do
let input = "f = (\\x : t (t (t x)))\nf t" let input = "f = (x : t (t (t x)))\nf t"
runTricu input @?= "Stem (Stem (Stem Leaf))" runTricu input @?= "Stem (Stem (Stem Leaf))"
, testCase "Lambda returning a function and applying it" $ do , testCase "Lambda returning a function and applying it" $ do
let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)" let input = "f = (x : (y : t x y))\ng = f t\ng (t t)"
runTricu input @?= "Fork Leaf (Stem Leaf)" runTricu input @?= "Fork Leaf (Stem Leaf)"
, testCase "Lambda applying a variable" $ do , testCase "Lambda applying a variable" $ do
let input = "id = (\\x : x)\na = t t\nid a" let input = "id = (x : x)\na = t t\nid a"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Nested lambda abstractions in the same expression" $ do , testCase "Nested lambda abstractions in the same expression" $ do
let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t" let input = "f = (x : (y : x y))\ng = (z : z)\nf g t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda applied to string literal" $ do , testCase "Lambda applied to string literal" $ do
let input = "f = (\\x : x)\nf \"hello\"" let input = "f = (x : x)\nf \"hello\""
runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))" runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
, testCase "Lambda applied to integer literal" $ do , testCase "Lambda applied to integer literal" $ do
let input = "f = (\\x : x)\nf 42" let input = "f = (x : x)\nf 42"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))" runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
, testCase "Lambda applied to list literal" $ do , testCase "Lambda applied to list literal" $ do
let input = "f = (\\x : x)\nf [t (t t)]" let input = "f = (x : x)\nf [t (t t)]"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)" runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
, testCase "Lambda containing list literal" $ do , testCase "Lambda containing list literal" $ do
let input = "(\\a : [(a)]) 1" let input = "(a : [(a)]) 1"
runTricu input @?= "Fork (Fork (Stem Leaf) Leaf) Leaf" runTricu input @?= "Fork (Fork (Stem Leaf) Leaf) Leaf"
] ]
@ -419,7 +434,7 @@ providedLibraries = testGroup "Library Tests"
, testCase "List map" $ do , testCase "List map" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/list.tri"
let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))" let input = "head (tail (map (a : (t t t)) [(t) (t) (t)]))"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf result env @?= Fork Leaf Leaf

View File

@ -1,9 +1,9 @@
-- This is a tricu comment! -- This is a tricu comment!
-- t (t t) (t (t t t)) -- t (t t) (t (t t t))
-- t (t t t) (t t) -- t (t t t) (t t)
-- x = (\a : a) -- x = (a : a)
main = t (t t) t -- Fork (Stem Leaf) Leaf main = t (t t) t -- Fork (Stem Leaf) Leaf
-- t t -- t t
-- x -- x
-- x = (\a : a) -- x = (a : a)
-- t -- t

View File

@ -1 +1 @@
main = (\x : x) t main = (x : x) t

View File

@ -1,2 +1,2 @@
x = map (\i : append "Successfully concatenated " i) [("two strings!")] x = map (i : append "Successfully concatenated " i) [("two strings!")]
main = equal? x [("Successfully concatenated two strings!")] main = equal? x [("Successfully concatenated two strings!")]

View File

@ -1,21 +1,21 @@
compose = \f g x : f (g x) compose = f g x : f (g x)
succ = y (\self : succ = y (self :
triage triage
1 1
t t
(triage (triage
(t (t t)) (t (t t))
(\_ tail : t t (self tail)) (_ tail : t t (self tail))
t)) t))
size = (\x : size = (x :
(y (\self x : (y (self x :
compose succ compose succ
(triage (triage
(\x : x) (x : x)
self self
(\x y : compose (self x) (self y)) (x y : compose (self x) (self y))
x)) x 0)) x)) x 0))
size size size size

View File

@ -1 +1 @@
head (map (\i : append "String " i) [("test!")]) head (map (i : append "String " i) [("test!")])

View File

@ -1 +1 @@
y = \x : x y = x : x