Compare commits
2 Commits
5024a2be4c
...
25bfe139e8
Author | SHA1 | Date | |
---|---|---|---|
25bfe139e8 | |||
f2beb86d8a |
17
README.md
17
README.md
@ -11,12 +11,11 @@ tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)
|
|||||||
## Features
|
## Features
|
||||||
|
|
||||||
- Tree Calculus operator: `t`
|
- Tree Calculus operator: `t`
|
||||||
- Assignments: `x = t t`
|
- Immutable definitions: `x = t t`
|
||||||
- Immutable definitions
|
- Lambda abstraction: `id = (a : a)`
|
||||||
- Lambda abstraction syntax: `id = (\a : a)`
|
|
||||||
- List, Number, and String literals: `[(2) ("Hello")]`
|
- List, Number, and String literals: `[(2) ("Hello")]`
|
||||||
- Function application: `not (not false)`
|
- Function application: `not (not false)`
|
||||||
- Higher order/first-class functions: `map (\a : append a "!") [("Hello")]`
|
- Higher order/first-class functions: `map (a : append a "!") [("Hello")]`
|
||||||
- Intensionality blurs the distinction between functions and data (see REPL examples)
|
- Intensionality blurs the distinction between functions and data (see REPL examples)
|
||||||
- Simple module system for code organization
|
- Simple module system for code organization
|
||||||
|
|
||||||
@ -24,15 +23,15 @@ tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)
|
|||||||
|
|
||||||
```
|
```
|
||||||
tricu < -- Anything after `--` on a single line is a comment
|
tricu < -- Anything after `--` on a single line is a comment
|
||||||
tricu < id = (\a : a) -- Lambda abstraction is eliminated to tree calculus terms
|
tricu < id = (a : a) -- Lambda abstraction is eliminated to tree calculus terms
|
||||||
tricu < head (map (\i : append i " world!") [("Hello, ")])
|
tricu < head (map (i : append i " world!") [("Hello, ")])
|
||||||
tricu > "Hello, world!"
|
tricu > "Hello, world!"
|
||||||
tricu < id (head (map (\i : append i " world!") [("Hello, ")]))
|
tricu < id (head (map (i : append i " world!") [("Hello, ")]))
|
||||||
tricu > "Hello, world!"
|
tricu > "Hello, world!"
|
||||||
|
|
||||||
tricu < -- Intensionality! We can inspect the structure of a function or data.
|
tricu < -- Intensionality! We can inspect the structure of a function or data.
|
||||||
tricu < triage = (\a b c : t (t a b) c)
|
tricu < triage = (a b c : t (t a b) c)
|
||||||
tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork")
|
tricu < test = triage "Leaf" (z : "Stem") (a b : "Fork")
|
||||||
tricu < test (t t)
|
tricu < test (t t)
|
||||||
tricu > "Stem"
|
tricu > "Stem"
|
||||||
tricu < -- We can even convert a term back to source code (/demos/toSource.tri)
|
tricu < -- We can even convert a term back to source code (/demos/toSource.tri)
|
||||||
|
@ -11,11 +11,11 @@ demo_true = t t
|
|||||||
not_TC? = t (t (t t) (t t t)) (t t (t t t))
|
not_TC? = t (t (t t) (t t t)) (t t (t t t))
|
||||||
|
|
||||||
-- /demos/toSource.tri contains an explanation of `triage`
|
-- /demos/toSource.tri contains an explanation of `triage`
|
||||||
demo_triage = \a b c : t (t a b) c
|
demo_triage = a b c : t (t a b) c
|
||||||
demo_matchBool = (\ot of : demo_triage
|
demo_matchBool = (ot of : demo_triage
|
||||||
of
|
of
|
||||||
(\_ : ot)
|
(_ : ot)
|
||||||
(\_ _ : ot)
|
(_ _ : ot)
|
||||||
)
|
)
|
||||||
-- Lambda representation of the Boolean `not` function
|
-- Lambda representation of the Boolean `not` function
|
||||||
not_Lambda? = demo_matchBool demo_false demo_true
|
not_Lambda? = demo_matchBool demo_false demo_true
|
||||||
|
@ -18,47 +18,47 @@ main = exampleTwo
|
|||||||
-- / / \
|
-- / / \
|
||||||
-- 4 5 6
|
-- 4 5 6
|
||||||
|
|
||||||
label = \node : head node
|
label = node : head node
|
||||||
|
|
||||||
left = (\node : if (emptyList? node)
|
left = (node : if (emptyList? node)
|
||||||
[]
|
[]
|
||||||
(if (emptyList? (tail node))
|
(if (emptyList? (tail node))
|
||||||
[]
|
[]
|
||||||
(head (tail node))))
|
(head (tail node))))
|
||||||
|
|
||||||
right = (\node : if (emptyList? node)
|
right = (node : if (emptyList? node)
|
||||||
[]
|
[]
|
||||||
(if (emptyList? (tail node))
|
(if (emptyList? (tail node))
|
||||||
[]
|
[]
|
||||||
(if (emptyList? (tail (tail node)))
|
(if (emptyList? (tail (tail node)))
|
||||||
[]
|
[]
|
||||||
(head (tail (tail node))))))
|
(head (tail (tail node))))))
|
||||||
|
|
||||||
processLevel = y (\self queue : if (emptyList? queue)
|
processLevel = y (self queue : if (emptyList? queue)
|
||||||
[]
|
[]
|
||||||
(pair (map label queue) (self (filter
|
(pair (map label queue) (self (filter
|
||||||
(\node : not? (emptyList? node))
|
(node : not? (emptyList? node))
|
||||||
(append (map left queue) (map right queue))))))
|
(append (map left queue) (map right queue))))))
|
||||||
|
|
||||||
levelOrderTraversal_ = \a : processLevel (t a t)
|
levelOrderTraversal_ = a : processLevel (t a t)
|
||||||
|
|
||||||
toLineString = y (\self levels : if (emptyList? levels)
|
toLineString = y (self levels : if (emptyList? levels)
|
||||||
""
|
""
|
||||||
(append
|
(append
|
||||||
(append (map (\x : append x " ") (head levels)) "")
|
(append (map (x : append x " ") (head levels)) "")
|
||||||
(if (emptyList? (tail levels)) "" (append (t (t 10 t) t) (self (tail levels))))))
|
(if (emptyList? (tail levels)) "" (append (t (t 10 t) t) (self (tail levels))))))
|
||||||
|
|
||||||
levelOrderToString = \s : toLineString (levelOrderTraversal_ s)
|
levelOrderToString = s : toLineString (levelOrderTraversal_ s)
|
||||||
|
|
||||||
flatten = foldl (\acc x : append acc x) ""
|
flatten = foldl (acc x : append acc x) ""
|
||||||
|
|
||||||
levelOrderTraversal = \s : append (t 10 t) (flatten (levelOrderToString s))
|
levelOrderTraversal = s : append (t 10 t) (flatten (levelOrderToString s))
|
||||||
|
|
||||||
exampleOne = levelOrderTraversal [("1")
|
exampleOne = levelOrderTraversal [("1")
|
||||||
[("2") [("4") t t] t]
|
[("2") [("4") t t] t]
|
||||||
[("3") [("5") t t] [("6") t t]]]
|
[("3") [("5") t t] [("6") t t]]]
|
||||||
|
|
||||||
exampleTwo = levelOrderTraversal [("1")
|
exampleTwo = levelOrderTraversal [("1")
|
||||||
[("2") [("4") [("8") t t] [("9") t t]]
|
[("2") [("4") [("8") t t] [("9") t t]]
|
||||||
[("6") [("10") t t] [("12") t t]]]
|
[("6") [("10") t t] [("12") t t]]]
|
||||||
[("3") [("5") [("11") t t] t] [("7") t t]]]
|
[("3") [("5") [("11") t t] t] [("7") t t]]]
|
||||||
|
@ -3,11 +3,11 @@
|
|||||||
|
|
||||||
main = size size
|
main = size size
|
||||||
|
|
||||||
size = (\x :
|
size = (x :
|
||||||
(y (\self x :
|
(y (self x :
|
||||||
compose succ
|
compose succ
|
||||||
(triage
|
(triage
|
||||||
(\x : x)
|
(x : x)
|
||||||
self
|
self
|
||||||
(\x y : compose (self x) (self y))
|
(x y : compose (self x) (self y))
|
||||||
x)) x 0))
|
x)) x 0))
|
||||||
|
@ -18,7 +18,7 @@ main = toSource not?
|
|||||||
sourceLeaf = t (head "t")
|
sourceLeaf = t (head "t")
|
||||||
|
|
||||||
-- Stem case
|
-- Stem case
|
||||||
sourceStem = (\convert : (\a rest :
|
sourceStem = (convert : (a rest :
|
||||||
t (head "(") -- Start with a left parenthesis "(".
|
t (head "(") -- Start with a left parenthesis "(".
|
||||||
(t (head "t") -- Add a "t"
|
(t (head "t") -- Add a "t"
|
||||||
(t (head " ") -- Add a space.
|
(t (head " ") -- Add a space.
|
||||||
@ -26,7 +26,7 @@ sourceStem = (\convert : (\a rest :
|
|||||||
(t (head ")") rest)))))) -- Close with ")" and append the rest.
|
(t (head ")") rest)))))) -- Close with ")" and append the rest.
|
||||||
|
|
||||||
-- Fork case
|
-- Fork case
|
||||||
sourceFork = (\convert : (\a b rest :
|
sourceFork = (convert : (a b rest :
|
||||||
t (head "(") -- Start with a left parenthesis "(".
|
t (head "(") -- Start with a left parenthesis "(".
|
||||||
(t (head "t") -- Add a "t"
|
(t (head "t") -- Add a "t"
|
||||||
(t (head " ") -- Add a space.
|
(t (head " ") -- Add a space.
|
||||||
@ -36,7 +36,7 @@ sourceFork = (\convert : (\a b rest :
|
|||||||
(t (head ")") rest)))))))) -- Close with ")" and append the rest.
|
(t (head ")") rest)))))))) -- Close with ")" and append the rest.
|
||||||
|
|
||||||
-- Wrapper around triage
|
-- Wrapper around triage
|
||||||
toSource_ = y (\self arg :
|
toSource_ = y (self arg :
|
||||||
triage
|
triage
|
||||||
sourceLeaf -- `triage` "a" case, Leaf
|
sourceLeaf -- `triage` "a" case, Leaf
|
||||||
(sourceStem self) -- `triage` "b" case, Stem
|
(sourceStem self) -- `triage` "b" case, Stem
|
||||||
@ -44,7 +44,7 @@ toSource_ = y (\self arg :
|
|||||||
arg) -- The term to be inspected
|
arg) -- The term to be inspected
|
||||||
|
|
||||||
-- toSource takes a single TC term and returns a String
|
-- toSource takes a single TC term and returns a String
|
||||||
toSource = \v : toSource_ v ""
|
toSource = v : toSource_ v ""
|
||||||
|
|
||||||
exampleOne = toSource true -- OUT: "(t t)"
|
exampleOne = toSource true -- OUT: "(t t)"
|
||||||
exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"
|
exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"
|
||||||
|
64
lib/base.tri
64
lib/base.tri
@ -1,74 +1,74 @@
|
|||||||
false = t
|
false = t
|
||||||
_ = t
|
_ = t
|
||||||
true = t t
|
true = t t
|
||||||
id = \a : a
|
id = a : a
|
||||||
const = \a b : a
|
const = a b : a
|
||||||
pair = t
|
pair = t
|
||||||
if = \cond then else : t (t else (t t then)) t cond
|
if = cond then else : t (t else (t t then)) t cond
|
||||||
|
|
||||||
y = ((\mut wait fun : wait mut (\x : fun (wait mut x)))
|
y = ((mut wait fun : wait mut (x : fun (wait mut x)))
|
||||||
(\x : x x)
|
(x : x x)
|
||||||
(\a0 a1 a2 : t (t a0) (t t a2) a1))
|
(a0 a1 a2 : t (t a0) (t t a2) a1))
|
||||||
|
|
||||||
compose = \f g x : f (g x)
|
compose = f g x : f (g x)
|
||||||
|
|
||||||
triage = \leaf stem fork : t (t leaf stem) fork
|
triage = leaf stem fork : t (t leaf stem) fork
|
||||||
test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork")
|
test = triage "Leaf" (_ : "Stem") (_ _ : "Fork")
|
||||||
|
|
||||||
matchBool = (\ot of : triage
|
matchBool = (ot of : triage
|
||||||
of
|
of
|
||||||
(\_ : ot)
|
(_ : ot)
|
||||||
(\_ _ : ot)
|
(_ _ : ot)
|
||||||
)
|
)
|
||||||
|
|
||||||
lAnd = (triage
|
lAnd = (triage
|
||||||
(\_ : false)
|
(_ : false)
|
||||||
(\_ x : x)
|
(_ x : x)
|
||||||
(\_ _ x : x))
|
(_ _ x : x))
|
||||||
|
|
||||||
lOr = (triage
|
lOr = (triage
|
||||||
(\x : x)
|
(x : x)
|
||||||
(\_ _ : true)
|
(_ _ : true)
|
||||||
(\_ _ _ : true))
|
(_ _ _ : true))
|
||||||
|
|
||||||
matchPair = \a : triage _ _ a
|
matchPair = a : triage _ _ a
|
||||||
|
|
||||||
not? = matchBool false true
|
not? = matchBool false true
|
||||||
and? = matchBool id (\_ : false)
|
and? = matchBool id (_ : false)
|
||||||
|
|
||||||
or? = (\x z :
|
or? = (x z :
|
||||||
matchBool
|
matchBool
|
||||||
(matchBool true true z)
|
(matchBool true true z)
|
||||||
(matchBool true false z)
|
(matchBool true false z)
|
||||||
x)
|
x)
|
||||||
|
|
||||||
xor? = (\x z :
|
xor? = (x z :
|
||||||
matchBool
|
matchBool
|
||||||
(matchBool false true z)
|
(matchBool false true z)
|
||||||
(matchBool true false z)
|
(matchBool true false z)
|
||||||
x)
|
x)
|
||||||
|
|
||||||
equal? = y (\self : triage
|
equal? = y (self : triage
|
||||||
(triage
|
(triage
|
||||||
true
|
true
|
||||||
(\_ : false)
|
(_ : false)
|
||||||
(\_ _ : false))
|
(_ _ : false))
|
||||||
(\ax :
|
(ax :
|
||||||
triage
|
triage
|
||||||
false
|
false
|
||||||
(self ax)
|
(self ax)
|
||||||
(\_ _ : false))
|
(_ _ : false))
|
||||||
(\ax ay :
|
(ax ay :
|
||||||
triage
|
triage
|
||||||
false
|
false
|
||||||
(\_ : false)
|
(_ : false)
|
||||||
(\bx by : lAnd (self ax bx) (self ay by))))
|
(bx by : lAnd (self ax bx) (self ay by))))
|
||||||
|
|
||||||
succ = y (\self :
|
succ = y (self :
|
||||||
triage
|
triage
|
||||||
1
|
1
|
||||||
t
|
t
|
||||||
(triage
|
(triage
|
||||||
(t (t t))
|
(t (t t))
|
||||||
(\_ tail : t t (self tail))
|
(_ tail : t t (self tail))
|
||||||
t))
|
t))
|
||||||
|
72
lib/list.tri
72
lib/list.tri
@ -1,68 +1,68 @@
|
|||||||
!import "base.tri" !Local
|
!import "base.tri" !Local
|
||||||
|
|
||||||
matchList = \a b : triage a _ b
|
matchList = a b : triage a _ b
|
||||||
|
|
||||||
emptyList? = matchList true (\_ _ : false)
|
emptyList? = matchList true (_ _ : false)
|
||||||
head = matchList t (\head _ : head)
|
head = matchList t (head _ : head)
|
||||||
tail = matchList t (\_ tail : tail)
|
tail = matchList t (_ tail : tail)
|
||||||
|
|
||||||
append = y (\self : matchList
|
append = y (self : matchList
|
||||||
(\k : k)
|
(k : k)
|
||||||
(\h r k : pair h (self r k)))
|
(h r k : pair h (self r k)))
|
||||||
|
|
||||||
lExist? = y (\self x : matchList
|
lExist? = y (self x : matchList
|
||||||
false
|
false
|
||||||
(\h z : or? (equal? x h) (self x z)))
|
(h z : or? (equal? x h) (self x z)))
|
||||||
|
|
||||||
map_ = y (\self :
|
map_ = y (self :
|
||||||
matchList
|
matchList
|
||||||
(\_ : t)
|
(_ : t)
|
||||||
(\head tail f : pair (f head) (self tail f)))
|
(head tail f : pair (f head) (self tail f)))
|
||||||
map = \f l : map_ l f
|
map = f l : map_ l f
|
||||||
|
|
||||||
filter_ = y (\self : matchList
|
filter_ = y (self : matchList
|
||||||
(\_ : t)
|
(_ : t)
|
||||||
(\head tail f : matchBool (t head) id (f head) (self tail f)))
|
(head tail f : matchBool (t head) id (f head) (self tail f)))
|
||||||
filter = \f l : filter_ l f
|
filter = f l : filter_ l f
|
||||||
|
|
||||||
foldl_ = y (\self f l x : matchList (\acc : acc) (\head tail acc : self f tail (f acc head)) l x)
|
foldl_ = y (self f l x : matchList (acc : acc) (head tail acc : self f tail (f acc head)) l x)
|
||||||
foldl = \f x l : foldl_ f l x
|
foldl = f x l : foldl_ f l x
|
||||||
|
|
||||||
foldr_ = y (\self x f l : matchList x (\head tail : f (self x f tail) head) l)
|
foldr_ = y (self x f l : matchList x (head tail : f (self x f tail) head) l)
|
||||||
foldr = \f x l : foldr_ x f l
|
foldr = f x l : foldr_ x f l
|
||||||
|
|
||||||
length = y (\self : matchList
|
length = y (self : matchList
|
||||||
0
|
0
|
||||||
(\_ tail : succ (self tail)))
|
(_ tail : succ (self tail)))
|
||||||
|
|
||||||
reverse = y (\self : matchList
|
reverse = y (self : matchList
|
||||||
t
|
t
|
||||||
(\head tail : append (self tail) (pair head t)))
|
(head tail : append (self tail) (pair head t)))
|
||||||
|
|
||||||
snoc = y (\self x : matchList
|
snoc = y (self x : matchList
|
||||||
(pair x t)
|
(pair x t)
|
||||||
(\h z : pair h (self x z)))
|
(h z : pair h (self x z)))
|
||||||
|
|
||||||
count = y (\self x : matchList
|
count = y (self x : matchList
|
||||||
0
|
0
|
||||||
(\h z : matchBool
|
(h z : matchBool
|
||||||
(succ (self x z))
|
(succ (self x z))
|
||||||
(self x z)
|
(self x z)
|
||||||
(equal? x h)))
|
(equal? x h)))
|
||||||
|
|
||||||
last = y (\self : matchList
|
last = y (self : matchList
|
||||||
t
|
t
|
||||||
(\hd tl : matchBool
|
(hd tl : matchBool
|
||||||
hd
|
hd
|
||||||
(self tl)
|
(self tl)
|
||||||
(emptyList? tl)))
|
(emptyList? tl)))
|
||||||
|
|
||||||
all? = y (\self pred : matchList
|
all? = y (self pred : matchList
|
||||||
true
|
true
|
||||||
(\h z : and? (pred h) (self pred z)))
|
(h z : and? (pred h) (self pred z)))
|
||||||
|
|
||||||
any? = y (\self pred : matchList
|
any? = y (self pred : matchList
|
||||||
false
|
false
|
||||||
(\h z : or? (pred h) (self pred z)))
|
(h z : or? (pred h) (self pred z)))
|
||||||
|
|
||||||
intersect = \xs ys : filter (\x : lExist? x ys) xs
|
intersect = xs ys : filter (x : lExist? x ys) xs
|
||||||
|
@ -1,36 +1,36 @@
|
|||||||
!import "list.tri" !Local
|
!import "list.tri" !Local
|
||||||
|
|
||||||
match_ = y (\self value patterns :
|
match_ = y (self value patterns :
|
||||||
triage
|
triage
|
||||||
t
|
t
|
||||||
(\_ : t)
|
(_ : t)
|
||||||
(\pattern rest :
|
(pattern rest :
|
||||||
triage
|
triage
|
||||||
t
|
t
|
||||||
(\_ : t)
|
(_ : t)
|
||||||
(\test result :
|
(test result :
|
||||||
if (test value)
|
if (test value)
|
||||||
(result value)
|
(result value)
|
||||||
(self value rest))
|
(self value rest))
|
||||||
pattern)
|
pattern)
|
||||||
patterns)
|
patterns)
|
||||||
|
|
||||||
match = (\value patterns :
|
match = (value patterns :
|
||||||
match_ value (map (\sublist :
|
match_ value (map (sublist :
|
||||||
pair (head sublist) (head (tail sublist)))
|
pair (head sublist) (head (tail sublist)))
|
||||||
patterns))
|
patterns))
|
||||||
|
|
||||||
otherwise = const (t t)
|
otherwise = const (t t)
|
||||||
|
|
||||||
matchExample = (\x : match x
|
matchExample = (x : match x
|
||||||
[[(equal? 1) (\_ : "one")]
|
[[(equal? 1) (_ : "one")]
|
||||||
[(equal? 2) (\_ : "two")]
|
[(equal? 2) (_ : "two")]
|
||||||
[(equal? 3) (\_ : "three")]
|
[(equal? 3) (_ : "three")]
|
||||||
[(equal? 4) (\_ : "four")]
|
[(equal? 4) (_ : "four")]
|
||||||
[(equal? 5) (\_ : "five")]
|
[(equal? 5) (_ : "five")]
|
||||||
[(equal? 6) (\_ : "six")]
|
[(equal? 6) (_ : "six")]
|
||||||
[(equal? 7) (\_ : "seven")]
|
[(equal? 7) (_ : "seven")]
|
||||||
[(equal? 8) (\_ : "eight")]
|
[(equal? 8) (_ : "eight")]
|
||||||
[(equal? 9) (\_ : "nine")]
|
[(equal? 9) (_ : "nine")]
|
||||||
[(equal? 10) (\_ : "ten")]
|
[(equal? 10) (_ : "ten")]
|
||||||
[ otherwise (\_ : "I ran out of fingers!")]])
|
[ otherwise (_ : "I ran out of fingers!")]])
|
||||||
|
23
src/Lexer.hs
23
src/Lexer.hs
@ -41,7 +41,6 @@ tricuLexer = do
|
|||||||
, try stringLiteral
|
, try stringLiteral
|
||||||
, assign
|
, assign
|
||||||
, colon
|
, colon
|
||||||
, backslash
|
|
||||||
, openParen
|
, openParen
|
||||||
, closeParen
|
, closeParen
|
||||||
, openBracket
|
, openBracket
|
||||||
@ -94,9 +93,6 @@ assign = char '=' $> LAssign
|
|||||||
colon :: Lexer LToken
|
colon :: Lexer LToken
|
||||||
colon = char ':' $> LColon
|
colon = char ':' $> LColon
|
||||||
|
|
||||||
backslash :: Lexer LToken
|
|
||||||
backslash = char '\\' $> LBackslash
|
|
||||||
|
|
||||||
openParen :: Lexer LToken
|
openParen :: Lexer LToken
|
||||||
openParen = char '(' $> LOpenParen
|
openParen = char '(' $> LOpenParen
|
||||||
|
|
||||||
@ -126,7 +122,22 @@ integerLiteral = do
|
|||||||
stringLiteral :: Lexer LToken
|
stringLiteral :: Lexer LToken
|
||||||
stringLiteral = do
|
stringLiteral = do
|
||||||
char '"'
|
char '"'
|
||||||
content <- many (noneOf ['"'])
|
content <- manyTill Lexer.charLiteral (char '"')
|
||||||
char '"' --"
|
|
||||||
return (LStringLiteral content)
|
return (LStringLiteral content)
|
||||||
|
|
||||||
|
charLiteral :: Lexer Char
|
||||||
|
charLiteral = escapedChar <|> normalChar
|
||||||
|
where
|
||||||
|
normalChar = noneOf ['"', '\\']
|
||||||
|
escapedChar = do
|
||||||
|
void $ char '\\'
|
||||||
|
c <- oneOf ['n', 't', 'r', 'f', 'b', '\\', '"', '\'']
|
||||||
|
return $ case c of
|
||||||
|
'n' -> '\n'
|
||||||
|
't' -> '\t'
|
||||||
|
'r' -> '\r'
|
||||||
|
'f' -> '\f'
|
||||||
|
'b' -> '\b'
|
||||||
|
'\\' -> '\\'
|
||||||
|
'"' -> '"'
|
||||||
|
'\'' -> '\''
|
||||||
|
@ -130,7 +130,6 @@ parseFunctionM = do
|
|||||||
parseLambdaM :: ParserM TricuAST
|
parseLambdaM :: ParserM TricuAST
|
||||||
parseLambdaM = do
|
parseLambdaM = do
|
||||||
let ident = (\case LIdentifier _ -> True; _ -> False)
|
let ident = (\case LIdentifier _ -> True; _ -> False)
|
||||||
_ <- satisfyM (== LBackslash)
|
|
||||||
params <- some (satisfyM ident)
|
params <- some (satisfyM ident)
|
||||||
_ <- satisfyM (== LColon)
|
_ <- satisfyM (== LColon)
|
||||||
scnParserM
|
scnParserM
|
||||||
@ -145,11 +144,11 @@ parseLambdaExpressionM = choice
|
|||||||
|
|
||||||
parseAtomicLambdaM :: ParserM TricuAST
|
parseAtomicLambdaM :: ParserM TricuAST
|
||||||
parseAtomicLambdaM = choice
|
parseAtomicLambdaM = choice
|
||||||
[ parseVarM
|
[ try parseLambdaM
|
||||||
|
, parseVarM
|
||||||
, parseTreeLeafM
|
, parseTreeLeafM
|
||||||
, parseLiteralM
|
, parseLiteralM
|
||||||
, parseListLiteralM
|
, parseListLiteralM
|
||||||
, try parseLambdaM
|
|
||||||
, between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM
|
, between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM
|
||||||
]
|
]
|
||||||
|
|
||||||
@ -205,7 +204,8 @@ parseTreeLeafOrParenthesizedM = choice
|
|||||||
|
|
||||||
parseAtomicM :: ParserM TricuAST
|
parseAtomicM :: ParserM TricuAST
|
||||||
parseAtomicM = choice
|
parseAtomicM = choice
|
||||||
[ parseVarM
|
[ try parseLambdaM
|
||||||
|
, parseVarM
|
||||||
, parseTreeLeafM
|
, parseTreeLeafM
|
||||||
, parseListLiteralM
|
, parseListLiteralM
|
||||||
, parseGroupedM
|
, parseGroupedM
|
||||||
|
@ -38,7 +38,6 @@ data LToken
|
|||||||
| LAssign
|
| LAssign
|
||||||
| LColon
|
| LColon
|
||||||
| LDot
|
| LDot
|
||||||
| LBackslash
|
|
||||||
| LOpenParen
|
| LOpenParen
|
||||||
| LCloseParen
|
| LCloseParen
|
||||||
| LOpenBracket
|
| LOpenBracket
|
||||||
|
75
test/Spec.hs
75
test/Spec.hs
@ -51,7 +51,22 @@ lexer = testGroup "Lexer Tests"
|
|||||||
|
|
||||||
, testCase "Lex escaped characters in strings" $ do
|
, testCase "Lex escaped characters in strings" $ do
|
||||||
let input = "\"hello\\nworld\""
|
let input = "\"hello\\nworld\""
|
||||||
expect = Right [LStringLiteral "hello\\nworld"]
|
expect = Right [LStringLiteral "hello\nworld"]
|
||||||
|
runParser tricuLexer "" input @?= expect
|
||||||
|
|
||||||
|
, testCase "Lex multiple escaped characters in strings" $ do
|
||||||
|
let input = "\"tab:\\t newline:\\n quote:\\\" backslash:\\\\\""
|
||||||
|
expect = Right [LStringLiteral "tab:\t newline:\n quote:\" backslash:\\"]
|
||||||
|
runParser tricuLexer "" input @?= expect
|
||||||
|
|
||||||
|
, testCase "Lex escaped characters in string literals" $ do
|
||||||
|
let input = "x = \"line1\\nline2\\tindented\""
|
||||||
|
expect = Right [LIdentifier "x", LAssign, LStringLiteral "line1\nline2\tindented"]
|
||||||
|
runParser tricuLexer "" input @?= expect
|
||||||
|
|
||||||
|
, testCase "Lex empty string with escape sequence" $ do
|
||||||
|
let input = "\"\\\"\""
|
||||||
|
expect = Right [LStringLiteral "\""]
|
||||||
runParser tricuLexer "" input @?= expect
|
runParser tricuLexer "" input @?= expect
|
||||||
|
|
||||||
, testCase "Lex mixed literals" $ do
|
, testCase "Lex mixed literals" $ do
|
||||||
@ -87,7 +102,7 @@ parser = testGroup "Parser Tests"
|
|||||||
Right _ -> assertFailure "Expected failure when trying to assign the value of T"
|
Right _ -> assertFailure "Expected failure when trying to assign the value of T"
|
||||||
|
|
||||||
, testCase "Parse function definitions" $ do
|
, testCase "Parse function definitions" $ do
|
||||||
let input = "x = (\\a b c : a)"
|
let input = "x = (a b c : a)"
|
||||||
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
|
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
|
||||||
parseSingle input @?= expect
|
parseSingle input @?= expect
|
||||||
|
|
||||||
@ -107,7 +122,7 @@ parser = testGroup "Parser Tests"
|
|||||||
parseSingle input @?= expect
|
parseSingle input @?= expect
|
||||||
|
|
||||||
, testCase "Parse function with applications" $ do
|
, testCase "Parse function with applications" $ do
|
||||||
let input = "f = (\\x : t x)"
|
let input = "f = (x : t x)"
|
||||||
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
|
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
|
||||||
parseSingle input @?= expect
|
parseSingle input @?= expect
|
||||||
|
|
||||||
@ -149,22 +164,22 @@ parser = testGroup "Parser Tests"
|
|||||||
parseSingle input @?= expect
|
parseSingle input @?= expect
|
||||||
|
|
||||||
, testCase "Parse nested parentheses in function body" $ do
|
, testCase "Parse nested parentheses in function body" $ do
|
||||||
let input = "f = (\\x : t (t (t t)))"
|
let input = "f = (x : t (t (t t)))"
|
||||||
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
|
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
|
||||||
parseSingle input @?= expect
|
parseSingle input @?= expect
|
||||||
|
|
||||||
, testCase "Parse lambda abstractions" $ do
|
, testCase "Parse lambda abstractions" $ do
|
||||||
let input = "(\\a : a)"
|
let input = "(a : a)"
|
||||||
expect = (SLambda ["a"] (SVar "a"))
|
expect = (SLambda ["a"] (SVar "a"))
|
||||||
parseSingle input @?= expect
|
parseSingle input @?= expect
|
||||||
|
|
||||||
, testCase "Parse multiple arguments to lambda abstractions" $ do
|
, testCase "Parse multiple arguments to lambda abstractions" $ do
|
||||||
let input = "x = (\\a b : a)"
|
let input = "x = (a b : a)"
|
||||||
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
|
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
|
||||||
parseSingle input @?= expect
|
parseSingle input @?= expect
|
||||||
|
|
||||||
, testCase "Grouping T terms with parentheses in function application" $ do
|
, testCase "Grouping T terms with parentheses in function application" $ do
|
||||||
let input = "x = (\\a : a)\nx (t)"
|
let input = "x = (a : a)\nx (t)"
|
||||||
expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
|
expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
|
||||||
parseTricu input @?= expect
|
parseTricu input @?= expect
|
||||||
|
|
||||||
@ -259,7 +274,7 @@ simpleEvaluation = testGroup "Evaluation Tests"
|
|||||||
|
|
||||||
, testCase "Apply identity to Boolean Not" $ do
|
, testCase "Apply identity to Boolean Not" $ do
|
||||||
let not = "(t (t (t t) (t t t)) t)"
|
let not = "(t (t (t t) (t t t)) t)"
|
||||||
let input = "x = (\\a : a)\nx " ++ not
|
let input = "x = (a : a)\nx " ++ not
|
||||||
env = evalTricu Map.empty (parseTricu input)
|
env = evalTricu Map.empty (parseTricu input)
|
||||||
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
|
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
|
||||||
]
|
]
|
||||||
@ -267,84 +282,84 @@ simpleEvaluation = testGroup "Evaluation Tests"
|
|||||||
lambdas :: TestTree
|
lambdas :: TestTree
|
||||||
lambdas = testGroup "Lambda Evaluation Tests"
|
lambdas = testGroup "Lambda Evaluation Tests"
|
||||||
[ testCase "Lambda Identity Function" $ do
|
[ testCase "Lambda Identity Function" $ do
|
||||||
let input = "id = (\\x : x)\nid t"
|
let input = "id = (x : x)\nid t"
|
||||||
runTricu input @?= "Leaf"
|
runTricu input @?= "Leaf"
|
||||||
|
|
||||||
, testCase "Lambda Constant Function (K combinator)" $ do
|
, testCase "Lambda Constant Function (K combinator)" $ do
|
||||||
let input = "k = (\\x y : x)\nk t (t t)"
|
let input = "k = (x y : x)\nk t (t t)"
|
||||||
runTricu input @?= "Leaf"
|
runTricu input @?= "Leaf"
|
||||||
|
|
||||||
, testCase "Lambda Application with Variable" $ do
|
, testCase "Lambda Application with Variable" $ do
|
||||||
let input = "id = (\\x : x)\nval = t t\nid val"
|
let input = "id = (x : x)\nval = t t\nid val"
|
||||||
runTricu input @?= "Stem Leaf"
|
runTricu input @?= "Stem Leaf"
|
||||||
|
|
||||||
, testCase "Lambda Application with Multiple Arguments" $ do
|
, testCase "Lambda Application with Multiple Arguments" $ do
|
||||||
let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)"
|
let input = "apply = (f x y : f x y)\nk = (a b : a)\napply k t (t t)"
|
||||||
runTricu input @?= "Leaf"
|
runTricu input @?= "Leaf"
|
||||||
|
|
||||||
, testCase "Nested Lambda Application" $ do
|
, testCase "Nested Lambda Application" $ do
|
||||||
let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t"
|
let input = "apply = (f x y : f x y)\nid = (x : x)\napply (f x : f x) id t"
|
||||||
runTricu input @?= "Leaf"
|
runTricu input @?= "Leaf"
|
||||||
|
|
||||||
, testCase "Lambda with a complex body" $ do
|
, testCase "Lambda with a complex body" $ do
|
||||||
let input = "f = (\\x : t (t x))\nf t"
|
let input = "f = (x : t (t x))\nf t"
|
||||||
runTricu input @?= "Stem (Stem Leaf)"
|
runTricu input @?= "Stem (Stem Leaf)"
|
||||||
|
|
||||||
, testCase "Lambda returning a function" $ do
|
, testCase "Lambda returning a function" $ do
|
||||||
let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)"
|
let input = "f = (x : (y : x))\ng = f t\ng (t t)"
|
||||||
runTricu input @?= "Leaf"
|
runTricu input @?= "Leaf"
|
||||||
|
|
||||||
, testCase "Lambda with Shadowing" $ do
|
, testCase "Lambda with Shadowing" $ do
|
||||||
let input = "f = (\\x : (\\x : x))\nf t (t t)"
|
let input = "f = (x : (x : x))\nf t (t t)"
|
||||||
runTricu input @?= "Stem Leaf"
|
runTricu input @?= "Stem Leaf"
|
||||||
|
|
||||||
, testCase "Lambda returning another lambda" $ do
|
, testCase "Lambda returning another lambda" $ do
|
||||||
let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)"
|
let input = "k = (x : (y : x))\nk_app = k t\nk_app (t t)"
|
||||||
runTricu input @?= "Leaf"
|
runTricu input @?= "Leaf"
|
||||||
|
|
||||||
, testCase "Lambda with free variables" $ do
|
, testCase "Lambda with free variables" $ do
|
||||||
let input = "y = t t\nf = (\\x : y)\nf t"
|
let input = "y = t t\nf = (x : y)\nf t"
|
||||||
runTricu input @?= "Stem Leaf"
|
runTricu input @?= "Stem Leaf"
|
||||||
|
|
||||||
, testCase "SKI Composition" $ do
|
, testCase "SKI Composition" $ do
|
||||||
let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)"
|
let input = "s = (x y z : x z (y z))\nk = (x y : x)\ni = (x : x)\ncomp = s k i\ncomp t (t t)"
|
||||||
runTricu input @?= "Stem (Stem Leaf)"
|
runTricu input @?= "Stem (Stem Leaf)"
|
||||||
|
|
||||||
, testCase "Lambda with multiple parameters and application" $ do
|
, testCase "Lambda with multiple parameters and application" $ do
|
||||||
let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)"
|
let input = "f = (a b c : t a b c)\nf t (t t) (t t t)"
|
||||||
runTricu input @?= "Stem Leaf"
|
runTricu input @?= "Stem Leaf"
|
||||||
|
|
||||||
, testCase "Lambda with nested application in the body" $ do
|
, testCase "Lambda with nested application in the body" $ do
|
||||||
let input = "f = (\\x : t (t (t x)))\nf t"
|
let input = "f = (x : t (t (t x)))\nf t"
|
||||||
runTricu input @?= "Stem (Stem (Stem Leaf))"
|
runTricu input @?= "Stem (Stem (Stem Leaf))"
|
||||||
|
|
||||||
, testCase "Lambda returning a function and applying it" $ do
|
, testCase "Lambda returning a function and applying it" $ do
|
||||||
let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)"
|
let input = "f = (x : (y : t x y))\ng = f t\ng (t t)"
|
||||||
runTricu input @?= "Fork Leaf (Stem Leaf)"
|
runTricu input @?= "Fork Leaf (Stem Leaf)"
|
||||||
|
|
||||||
, testCase "Lambda applying a variable" $ do
|
, testCase "Lambda applying a variable" $ do
|
||||||
let input = "id = (\\x : x)\na = t t\nid a"
|
let input = "id = (x : x)\na = t t\nid a"
|
||||||
runTricu input @?= "Stem Leaf"
|
runTricu input @?= "Stem Leaf"
|
||||||
|
|
||||||
, testCase "Nested lambda abstractions in the same expression" $ do
|
, testCase "Nested lambda abstractions in the same expression" $ do
|
||||||
let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t"
|
let input = "f = (x : (y : x y))\ng = (z : z)\nf g t"
|
||||||
runTricu input @?= "Leaf"
|
runTricu input @?= "Leaf"
|
||||||
|
|
||||||
, testCase "Lambda applied to string literal" $ do
|
, testCase "Lambda applied to string literal" $ do
|
||||||
let input = "f = (\\x : x)\nf \"hello\""
|
let input = "f = (x : x)\nf \"hello\""
|
||||||
runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
|
runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
|
||||||
|
|
||||||
|
|
||||||
, testCase "Lambda applied to integer literal" $ do
|
, testCase "Lambda applied to integer literal" $ do
|
||||||
let input = "f = (\\x : x)\nf 42"
|
let input = "f = (x : x)\nf 42"
|
||||||
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
|
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
|
||||||
|
|
||||||
, testCase "Lambda applied to list literal" $ do
|
, testCase "Lambda applied to list literal" $ do
|
||||||
let input = "f = (\\x : x)\nf [t (t t)]"
|
let input = "f = (x : x)\nf [t (t t)]"
|
||||||
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
|
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
|
||||||
|
|
||||||
, testCase "Lambda containing list literal" $ do
|
, testCase "Lambda containing list literal" $ do
|
||||||
let input = "(\\a : [(a)]) 1"
|
let input = "(a : [(a)]) 1"
|
||||||
runTricu input @?= "Fork (Fork (Stem Leaf) Leaf) Leaf"
|
runTricu input @?= "Fork (Fork (Stem Leaf) Leaf) Leaf"
|
||||||
]
|
]
|
||||||
|
|
||||||
@ -419,7 +434,7 @@ providedLibraries = testGroup "Library Tests"
|
|||||||
|
|
||||||
, testCase "List map" $ do
|
, testCase "List map" $ do
|
||||||
library <- evaluateFile "./lib/list.tri"
|
library <- evaluateFile "./lib/list.tri"
|
||||||
let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))"
|
let input = "head (tail (map (a : (t t t)) [(t) (t) (t)]))"
|
||||||
env = evalTricu library (parseTricu input)
|
env = evalTricu library (parseTricu input)
|
||||||
result env @?= Fork Leaf Leaf
|
result env @?= Fork Leaf Leaf
|
||||||
|
|
||||||
@ -554,4 +569,4 @@ decoding = testGroup "Decoding Tests"
|
|||||||
, testCase "Decode nested lists with strings" $ do
|
, testCase "Decode nested lists with strings" $ do
|
||||||
let input = ofList [ofList [ofString "nested"], ofString "string"]
|
let input = ofList [ofList [ofString "nested"], ofString "string"]
|
||||||
decodeResult input @?= "[[\"nested\"], \"string\"]"
|
decodeResult input @?= "[[\"nested\"], \"string\"]"
|
||||||
]
|
]
|
||||||
|
@ -1,9 +1,9 @@
|
|||||||
-- This is a tricu comment!
|
-- This is a tricu comment!
|
||||||
-- t (t t) (t (t t t))
|
-- t (t t) (t (t t t))
|
||||||
-- t (t t t) (t t)
|
-- t (t t t) (t t)
|
||||||
-- x = (\a : a)
|
-- x = (a : a)
|
||||||
main = t (t t) t -- Fork (Stem Leaf) Leaf
|
main = t (t t) t -- Fork (Stem Leaf) Leaf
|
||||||
-- t t
|
-- t t
|
||||||
-- x
|
-- x
|
||||||
-- x = (\a : a)
|
-- x = (a : a)
|
||||||
-- t
|
-- t
|
||||||
|
@ -1 +1 @@
|
|||||||
main = (\x : x) t
|
main = (x : x) t
|
||||||
|
@ -1,2 +1,2 @@
|
|||||||
x = map (\i : append "Successfully concatenated " i) [("two strings!")]
|
x = map (i : append "Successfully concatenated " i) [("two strings!")]
|
||||||
main = equal? x [("Successfully concatenated two strings!")]
|
main = equal? x [("Successfully concatenated two strings!")]
|
||||||
|
@ -1,21 +1,21 @@
|
|||||||
compose = \f g x : f (g x)
|
compose = f g x : f (g x)
|
||||||
|
|
||||||
succ = y (\self :
|
succ = y (self :
|
||||||
triage
|
triage
|
||||||
1
|
1
|
||||||
t
|
t
|
||||||
(triage
|
(triage
|
||||||
(t (t t))
|
(t (t t))
|
||||||
(\_ tail : t t (self tail))
|
(_ tail : t t (self tail))
|
||||||
t))
|
t))
|
||||||
|
|
||||||
size = (\x :
|
size = (x :
|
||||||
(y (\self x :
|
(y (self x :
|
||||||
compose succ
|
compose succ
|
||||||
(triage
|
(triage
|
||||||
(\x : x)
|
(x : x)
|
||||||
self
|
self
|
||||||
(\x y : compose (self x) (self y))
|
(x y : compose (self x) (self y))
|
||||||
x)) x 0))
|
x)) x 0))
|
||||||
|
|
||||||
size size
|
size size
|
||||||
|
@ -1 +1 @@
|
|||||||
head (map (\i : append "String " i) [("test!")])
|
head (map (i : append "String " i) [("test!")])
|
||||||
|
@ -1 +1 @@
|
|||||||
y = \x : x
|
y = x : x
|
||||||
|
Loading…
x
Reference in New Issue
Block a user