Compare commits

..

No commits in common. "main" and "0.18.0" have entirely different histories.
main ... 0.18.0

24 changed files with 347 additions and 438 deletions

@ -11,11 +11,12 @@ tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)
## Features ## Features
- Tree Calculus operator: `t` - Tree Calculus operator: `t`
- Immutable definitions: `x = t t` - Assignments: `x = t t`
- Lambda abstraction: `id = (a : a)` - Immutable definitions
- Lambda abstraction syntax: `id = (\a : a)`
- List, Number, and String literals: `[(2) ("Hello")]` - List, Number, and String literals: `[(2) ("Hello")]`
- Function application: `not (not false)` - Function application: `not (not false)`
- Higher order/first-class functions: `map (a : append a "!") [("Hello")]` - Higher order/first-class functions: `map (\a : append a "!") [("Hello")]`
- Intensionality blurs the distinction between functions and data (see REPL examples) - Intensionality blurs the distinction between functions and data (see REPL examples)
- Simple module system for code organization - Simple module system for code organization
@ -23,15 +24,15 @@ tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)
``` ```
tricu < -- Anything after `--` on a single line is a comment tricu < -- Anything after `--` on a single line is a comment
tricu < id = (a : a) -- Lambda abstraction is eliminated to tree calculus terms tricu < id = (\a : a) -- Lambda abstraction is eliminated to tree calculus terms
tricu < head (map (i : append i " world!") [("Hello, ")]) tricu < head (map (\i : append i " world!") [("Hello, ")])
tricu > "Hello, world!" tricu > "Hello, world!"
tricu < id (head (map (i : append i " world!") [("Hello, ")])) tricu < id (head (map (\i : append i " world!") [("Hello, ")]))
tricu > "Hello, world!" tricu > "Hello, world!"
tricu < -- Intensionality! We can inspect the structure of a function or data. tricu < -- Intensionality! We can inspect the structure of a function or data.
tricu < triage = (a b c : t (t a b) c) tricu < triage = (\a b c : t (t a b) c)
tricu < test = triage "Leaf" (z : "Stem") (a b : "Fork") tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork")
tricu < test (t t) tricu < test (t t)
tricu > "Stem" tricu > "Stem"
tricu < -- We can even convert a term back to source code (/demos/toSource.tri) tricu < -- We can even convert a term back to source code (/demos/toSource.tri)
@ -54,7 +55,9 @@ tricu < !version -- Print tricu version
## Installation and Use ## Installation and Use
You can easily build and run this project using [Nix](https://nixos.org/download/). [Releases are available for Linux.](https://git.eversole.co/James/tricu/releases)
Or you can easily build and run this project using [Nix](https://nixos.org/download/).
- Quick Start (REPL): - Quick Start (REPL):
- `nix run git+https://git.eversole.co/James/tricu` - `nix run git+https://git.eversole.co/James/tricu`

@ -11,17 +11,20 @@ demo_true = t t
not_TC? = t (t (t t) (t t t)) (t t (t t t)) not_TC? = t (t (t t) (t t t)) (t t (t t t))
-- /demos/toSource.tri contains an explanation of `triage` -- /demos/toSource.tri contains an explanation of `triage`
demo_triage = a b c : t (t a b) c demo_triage = \a b c : t (t a b) c
demo_matchBool = a b : demo_triage b (_ : a) (_ _ : a) demo_matchBool = (\ot of : demo_triage
of
(\_ : ot)
(\_ _ : ot)
)
-- Lambda representation of the Boolean `not` function -- Lambda representation of the Boolean `not` function
not_Lambda? = demo_matchBool demo_false demo_true not_Lambda? = demo_matchBool demo_false demo_true
-- As tricu eliminates Lambda terms to SKI combinators, the tree form of many -- Since tricu eliminates Lambda terms to SKI combinators, the tree form of many
-- functions defined via Lambda terms are larger than the most efficient TC -- functions defined via Lambda terms are larger than the most efficient TC
-- representation possible. Between different languages that evaluate to tree -- representation. Between different languages that evaluate to tree calculus
-- calculus terms, the exact implementation of Lambda elimination may differ -- terms, the exact implementation of Lambda elimination may differ and lead
-- and lead to different trees even if they share extensional behavior. -- to different tree representations even if they share extensional behavior.
-- Let's see if these are the same: -- Let's see if these are the same:
lambdaEqualsTC = equal? not_TC? not_Lambda? lambdaEqualsTC = equal? not_TC? not_Lambda?

@ -18,15 +18,15 @@ main = exampleTwo
-- / / \ -- / / \
-- 4 5 6 -- 4 5 6
label = node : head node label = \node : head node
left = node : (if (emptyList? node) left = (\node : if (emptyList? node)
[] []
(if (emptyList? (tail node)) (if (emptyList? (tail node))
[] []
(head (tail node)))) (head (tail node))))
right = node : (if (emptyList? node) right = (\node : if (emptyList? node)
[] []
(if (emptyList? (tail node)) (if (emptyList? (tail node))
[] []
@ -34,25 +34,25 @@ right = node : (if (emptyList? node)
[] []
(head (tail (tail node)))))) (head (tail (tail node))))))
processLevel = y (self queue : if (emptyList? queue) processLevel = y (\self queue : if (emptyList? queue)
[] []
(pair (map label queue) (self (filter (pair (map label queue) (self (filter
(node : not? (emptyList? node)) (\node : not? (emptyList? node))
(append (map left queue) (map right queue)))))) (append (map left queue) (map right queue))))))
levelOrderTraversal_ = a : processLevel (t a t) levelOrderTraversal_ = \a : processLevel (t a t)
toLineString = y (self levels : if (emptyList? levels) toLineString = y (\self levels : if (emptyList? levels)
"" ""
(append (append
(append (map (x : append x " ") (head levels)) "") (append (map (\x : append x " ") (head levels)) "")
(if (emptyList? (tail levels)) "" (append (t (t 10 t) t) (self (tail levels)))))) (if (emptyList? (tail levels)) "" (append (t (t 10 t) t) (self (tail levels))))))
levelOrderToString = s : toLineString (levelOrderTraversal_ s) levelOrderToString = \s : toLineString (levelOrderTraversal_ s)
flatten = foldl (acc x : append acc x) "" flatten = foldl (\acc x : append acc x) ""
levelOrderTraversal = s : append (t 10 t) (flatten (levelOrderToString s)) levelOrderTraversal = \s : append (t 10 t) (flatten (levelOrderToString s))
exampleOne = levelOrderTraversal [("1") exampleOne = levelOrderTraversal [("1")
[("2") [("4") t t] t] [("2") [("4") t t] t]

@ -1,37 +0,0 @@
!import "../lib/patterns.tri" !Local
-- We can do conditional pattern matching by providing a list of lists, where
-- each sublist contains a boolean expression and a function to return if said
-- boolean expression evaluates to true.
value = 42
main = match value [[(equal? "Hello") (_ : ", world!")] [(equal? 42) (_ : "The answer.")]]
-- < main
-- > "The answer."
matchExample = (x : match x
[[(equal? 1) (_ : "one")]
[(equal? 2) (_ : "two")]
[(equal? 3) (_ : "three")]
[(equal? 4) (_ : "four")]
[(equal? 5) (_ : "five")]
[(equal? 6) (_ : "six")]
[(equal? 7) (_ : "seven")]
[(equal? 8) (_ : "eight")]
[(equal? 9) (_ : "nine")]
[(equal? 10) (_ : "ten")]
[ otherwise (_ : "I ran out of fingers!")]])
-- < matchExample 3
-- > "three"
-- < matchExample 5
-- > "five"
-- < matchExample 9
-- > "nine"
-- < matchExample 11
-- > "I ran out of fingers!"
-- < matchExample "three"
-- > "I ran out of fingers!"
-- < matchExample [("hello") ("world")]
-- > "I ran out of fingers!"

@ -3,9 +3,11 @@
main = size size main = size size
size = x : y (self x : compose succ (triage size = (\x :
id (y (\self x :
self compose succ
(x y : compose (self x) (self y)) (triage
x) (\x : x)
) x 0 self
(\x y : compose (self x) (self y))
x)) x 0))

@ -18,25 +18,25 @@ main = toSource not?
sourceLeaf = t (head "t") sourceLeaf = t (head "t")
-- Stem case -- Stem case
sourceStem = convert : (a rest : sourceStem = (\convert : (\a rest :
t (head "(") -- Start with a left parenthesis "(". t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t" (t (head "t") -- Add a "t"
(t (head " ") -- Add a space. (t (head " ") -- Add a space.
(convert a -- Recursively convert the argument. (convert a -- Recursively convert the argument.
(t (head ")") rest))))) -- Close with ")" and append the rest. (t (head ")") rest)))))) -- Close with ")" and append the rest.
-- Fork case -- Fork case
sourceFork = convert : (a b rest : sourceFork = (\convert : (\a b rest :
t (head "(") -- Start with a left parenthesis "(". t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t" (t (head "t") -- Add a "t"
(t (head " ") -- Add a space. (t (head " ") -- Add a space.
(convert a -- Recursively convert the first arg. (convert a -- Recursively convert the first arg.
(t (head " ") -- Add another space. (t (head " ") -- Add another space.
(convert b -- Recursively convert the second arg. (convert b -- Recursively convert the second arg.
(t (head ")") rest))))))) -- Close with ")" and append the rest. (t (head ")") rest)))))))) -- Close with ")" and append the rest.
-- Wrapper around triage -- Wrapper around triage
toSource_ = y (self arg : toSource_ = y (\self arg :
triage triage
sourceLeaf -- `triage` "a" case, Leaf sourceLeaf -- `triage` "a" case, Leaf
(sourceStem self) -- `triage` "b" case, Stem (sourceStem self) -- `triage` "b" case, Stem
@ -44,7 +44,7 @@ toSource_ = y (self arg :
arg) -- The term to be inspected arg) -- The term to be inspected
-- toSource takes a single TC term and returns a String -- toSource takes a single TC term and returns a String
toSource = v : toSource_ v "" toSource = \v : toSource_ v ""
exampleOne = toSource true -- OUT: "(t t)" exampleOne = toSource true -- OUT: "(t t)"
exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))" exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"

@ -2,46 +2,57 @@
description = "tricu"; description = "tricu";
inputs = { inputs = {
nixpkgs.url = "github:NixOS/nixpkgs"; nixpkgs = {
flake-utils.url = "github:numtide/flake-utils"; url = "https://github.com/nh2/nixpkgs/archive/ede5282c487a1fd2de64303ba59adad6726f1225.tar.gz";
type = "tarball";
flake = false;
};
static-haskell-nix = {
url = "github:nh2/static-haskell-nix";
flake = false;
};
}; };
outputs = { self, nixpkgs, flake-utils }: outputs = { self, nixpkgs, static-haskell-nix }:
flake-utils.lib.eachDefaultSystem (system: let
let system = "x86_64-linux";
pkgs = nixpkgs.legacyPackages.${system}; compiler = "ghc948";
packageName = "tricu"; packageName = "tricu";
containerPackageName = "${packageName}-container";
customGHC = pkgs.haskellPackages.ghcWithPackages (hpkgs: with hpkgs; [ overlay = self: super: {
megaparsec haskell = super.haskell // {
]); packages = super.haskell.packages // {
${compiler} = super.haskell.packages.${compiler}.override {
haskellPackages = pkgs.haskellPackages; overrides = final: prev: {
${packageName} = prev.callCabal2nix packageName ./. {};
enableSharedExecutables = false; };
enableSharedLibraries = false; };
};
tricu = pkgs.haskell.lib.justStaticExecutables self.packages.${system}.default;
in {
packages.${packageName} =
haskellPackages.callCabal2nix packageName self rec {};
packages.default = self.packages.${system}.${packageName};
defaultPackage = self.packages.${system}.default;
devShells.default = pkgs.mkShell {
buildInputs = with pkgs; [
haskellPackages.cabal-install
haskellPackages.ghc-events
haskellPackages.ghcid
customGHC
upx
];
inputsFrom = builtins.attrValues self.packages.${system};
}; };
devShell = self.devShells.${system}.default; };
}); overlays = [overlay];
normalPkgs = import nixpkgs { inherit overlays system; };
survey = import "${static-haskell-nix}/survey" { inherit compiler normalPkgs; };
tricuStatic = survey.haskellPackages.${packageName};
in {
packages.${system}.default = tricuStatic;
devShells.default = normalPkgs.mkShell {
buildInputs = with normalPkgs; [
normalPkgs.haskellPackages.cabal-install
normalPkgs.haskellPackages.ghc-events
normalPkgs.haskellPackages.ghcid
normalPkgs.upx
];
inputsFrom = builtins.attrValues self.packages.${system};
};
devShell = self.devShells.${system}.default;
};
} }

@ -1,74 +1,74 @@
false = t false = t
_ = t _ = t
true = t t true = t t
id = a : a id = \a : a
const = a b : a const = \a b : a
pair = t pair = t
if = cond then else : t (t else (t t then)) t cond if = \cond then else : t (t else (t t then)) t cond
y = ((mut wait fun : wait mut (x : fun (wait mut x))) y = ((\mut wait fun : wait mut (\x : fun (wait mut x)))
(x : x x) (\x : x x)
(a0 a1 a2 : t (t a0) (t t a2) a1)) (\a0 a1 a2 : t (t a0) (t t a2) a1))
compose = f g x : f (g x) compose = \f g x : f (g x)
triage = leaf stem fork : t (t leaf stem) fork triage = \leaf stem fork : t (t leaf stem) fork
test = triage "Leaf" (_ : "Stem") (_ _ : "Fork") test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork")
matchBool = (ot of : triage matchBool = (\ot of : triage
of of
(_ : ot) (\_ : ot)
(_ _ : ot) (\_ _ : ot)
) )
lAnd = (triage lAnd = (triage
(_ : false) (\_ : false)
(_ x : x) (\_ x : x)
(_ _ x : x)) (\_ _ x : x))
lOr = (triage lOr = (triage
(x : x) (\x : x)
(_ _ : true) (\_ _ : true)
(_ _ _ : true)) (\_ _ _ : true))
matchPair = a : triage _ _ a matchPair = \a : triage _ _ a
not? = matchBool false true not? = matchBool false true
and? = matchBool id (_ : false) and? = matchBool id (\_ : false)
or? = (x z : or? = (\x z :
matchBool matchBool
(matchBool true true z) (matchBool true true z)
(matchBool true false z) (matchBool true false z)
x) x)
xor? = (x z : xor? = (\x z :
matchBool matchBool
(matchBool false true z) (matchBool false true z)
(matchBool true false z) (matchBool true false z)
x) x)
equal? = y (self : triage equal? = y (\self : triage
(triage (triage
true true
(_ : false) (\_ : false)
(_ _ : false)) (\_ _ : false))
(ax : (\ax :
triage triage
false false
(self ax) (self ax)
(_ _ : false)) (\_ _ : false))
(ax ay : (\ax ay :
triage triage
false false
(_ : false) (\_ : false)
(bx by : lAnd (self ax bx) (self ay by)))) (\bx by : lAnd (self ax bx) (self ay by))))
succ = y (self : succ = y (\self :
triage triage
1 1
t t
(triage (triage
(t (t t)) (t (t t))
(_ tail : t t (self tail)) (\_ tail : t t (self tail))
t)) t))

@ -1,70 +1,68 @@
!import "base.tri" !Local !import "base.tri" !Local
_ = t matchList = \a b : triage a _ b
matchList = a b : triage a _ b emptyList? = matchList true (\_ _ : false)
head = matchList t (\head _ : head)
tail = matchList t (\_ tail : tail)
emptyList? = matchList true (_ _ : false) append = y (\self : matchList
head = matchList t (head _ : head) (\k : k)
tail = matchList t (_ tail : tail) (\h r k : pair h (self r k)))
append = y (self : matchList lExist? = y (\self x : matchList
(k : k)
(h r k : pair h (self r k)))
lExist? = y (self x : matchList
false false
(h z : or? (equal? x h) (self x z))) (\h z : or? (equal? x h) (self x z)))
map_ = y (self : map_ = y (\self :
matchList matchList
(_ : t) (\_ : t)
(head tail f : pair (f head) (self tail f))) (\head tail f : pair (f head) (self tail f)))
map = f l : map_ l f map = \f l : map_ l f
filter_ = y (self : matchList filter_ = y (\self : matchList
(_ : t) (\_ : t)
(head tail f : matchBool (t head) id (f head) (self tail f))) (\head tail f : matchBool (t head) id (f head) (self tail f)))
filter = f l : filter_ l f filter = \f l : filter_ l f
foldl_ = y (self f l x : matchList (acc : acc) (head tail acc : self f tail (f acc head)) l x) foldl_ = y (\self f l x : matchList (\acc : acc) (\head tail acc : self f tail (f acc head)) l x)
foldl = f x l : foldl_ f l x foldl = \f x l : foldl_ f l x
foldr_ = y (self x f l : matchList x (head tail : f (self x f tail) head) l) foldr_ = y (\self x f l : matchList x (\head tail : f (self x f tail) head) l)
foldr = f x l : foldr_ x f l foldr = \f x l : foldr_ x f l
length = y (self : matchList length = y (\self : matchList
0 0
(_ tail : succ (self tail))) (\_ tail : succ (self tail)))
reverse = y (self : matchList reverse = y (\self : matchList
t t
(head tail : append (self tail) (pair head t))) (\head tail : append (self tail) (pair head t)))
snoc = y (self x : matchList snoc = y (\self x : matchList
(pair x t) (pair x t)
(h z : pair h (self x z))) (\h z : pair h (self x z)))
count = y (self x : matchList count = y (\self x : matchList
0 0
(h z : matchBool (\h z : matchBool
(succ (self x z)) (succ (self x z))
(self x z) (self x z)
(equal? x h))) (equal? x h)))
last = y (self : matchList last = y (\self : matchList
t t
(hd tl : matchBool (\hd tl : matchBool
hd hd
(self tl) (self tl)
(emptyList? tl))) (emptyList? tl)))
all? = y (self pred : matchList all? = y (\self pred : matchList
true true
(h z : and? (pred h) (self pred z))) (\h z : and? (pred h) (self pred z)))
any? = y (self pred : matchList any? = y (\self pred : matchList
false false
(h z : or? (pred h) (self pred z))) (\h z : or? (pred h) (self pred z)))
intersect = xs ys : filter (x : lExist? x ys) xs intersect = \xs ys : filter (\x : lExist? x ys) xs

@ -1,24 +1,36 @@
!import "base.tri" !Local !import "list.tri" !Local
!import "list.tri" List
match_ = y (self value patterns : match_ = y (\self value patterns :
triage triage
t t
(_ : t) (\_ : t)
(pattern rest : (\pattern rest :
triage triage
t t
(_ : t) (\_ : t)
(test result : (\test result :
if (test value) if (test value)
(result value) (result value)
(self value rest)) (self value rest))
pattern) pattern)
patterns) patterns)
match = (value patterns : match = (\value patterns :
match_ value (List.map (sublist : match_ value (map (\sublist :
pair (List.head sublist) (List.head (List.tail sublist))) pair (head sublist) (head (tail sublist)))
patterns)) patterns))
otherwise = const (t t) otherwise = const (t t)
matchExample = (\x : match x
[[(equal? 1) (\_ : "one")]
[(equal? 2) (\_ : "two")]
[(equal? 3) (\_ : "three")]
[(equal? 4) (\_ : "four")]
[(equal? 5) (\_ : "five")]
[(equal? 6) (\_ : "six")]
[(equal? 7) (\_ : "seven")]
[(equal? 8) (\_ : "eight")]
[(equal? 9) (\_ : "nine")]
[(equal? 10) (\_ : "ten")]
[ otherwise (\_ : "I ran out of fingers!")]])

@ -62,39 +62,27 @@ evalAST env term
elimLambda :: TricuAST -> TricuAST elimLambda :: TricuAST -> TricuAST
elimLambda = go elimLambda = go
where where
go term -- η-reduction
| etaReduction term = elimLambda $ etaReduceResult term go (SLambda [v] (SApp f (SVar x)))
| triagePattern term = _TRI | v == x && not (isFree v f) = elimLambda f
| composePattern term = _B -- Triage optimization
| lambdaList term = elimLambda $ lambdaListResult term go (SLambda [a] (SLambda [b] (SLambda [c] body)))
| nestedLambda term = nestedLambdaResult term | body == triageBody = _TRIAGE
| application term = applicationResult term where
| otherwise = term triageBody =
SApp (SApp TLeaf (SApp (SApp TLeaf (SVar a)) (SVar b))) (SVar c)
etaReduction (SLambda [v] (SApp f (SVar x))) = v == x && not (isFree v f) -- Composition optimization
etaReduction _ = False go (SLambda [f] (SLambda [g] (SLambda [x] body)))
etaReduceResult (SLambda [_] (SApp f _)) = f | body == SApp (SVar f) (SApp (SVar g) (SVar x)) = _B
-- General elimination
triagePattern (SLambda [a] (SLambda [b] (SLambda [c] body))) = body == triageBody a b c go (SLambda [v] (SList xs))
triagePattern _ = False = elimLambda (SLambda [v] (foldr wrapTLeaf TLeaf xs))
where wrapTLeaf m r = SApp (SApp TLeaf m) r
composePattern (SLambda [f] (SLambda [g] (SLambda [x] body))) = body == composeBody f g x go (SLambda (v:vs) body)
composePattern _ = False | null vs = toSKI v (elimLambda body)
| otherwise = elimLambda (SLambda [v] (SLambda vs body))
lambdaList (SLambda [_] (SList _)) = True go (SApp f g) = SApp (elimLambda f) (elimLambda g)
lambdaList _ = False go x = x
lambdaListResult (SLambda [v] (SList xs)) = SLambda [v] (foldr wrapTLeaf TLeaf xs)
wrapTLeaf m r = SApp (SApp TLeaf m) r
nestedLambda (SLambda (_:_) _) = True
nestedLambda _ = False
nestedLambdaResult (SLambda (v:vs) body)
| null vs = toSKI v (elimLambda body)
| otherwise = elimLambda (SLambda [v] (SLambda vs body))
application (SApp _ _) = True
application _ = False
applicationResult (SApp f g) = SApp (elimLambda f) (elimLambda g)
toSKI x (SVar y) toSKI x (SVar y)
| x == y = _I | x == y = _I
@ -102,38 +90,30 @@ elimLambda = go
toSKI x t@(SApp n u) toSKI x t@(SApp n u)
| not (isFree x t) = SApp _K t | not (isFree x t) = SApp _K t
| otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u) | otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u)
toSKI x (SList xs)
| not (isFree x (SList xs)) = SApp _K (SList xs)
| otherwise = SList (map (toSKI x) xs)
toSKI x t toSKI x t
| not (isFree x t) = SApp _K t | not (isFree x t) = SApp _K t
| otherwise = errorWithoutStackTrace "Unhandled toSKI conversion" | otherwise = errorWithoutStackTrace "Unhandled toSKI conversion"
-- Combinators and special forms _S = parseSingle "t (t (t t t)) t"
_S = parseSingle "t (t (t t t)) t" _K = parseSingle "t t"
_K = parseSingle "t t" _I = parseSingle "t (t (t t)) t"
_I = parseSingle "t (t (t t)) t" _B = parseSingle "t (t (t t (t (t (t t t)) t))) (t t)"
_B = parseSingle "t (t (t t (t (t (t t t)) t))) (t t)" _TRIAGE = parseSingle "t (t (t t (t (t (t t t))))) t"
_TRI = parseSingle "t (t (t t (t (t (t t t))))) t"
-- Pattern bodies
triageBody a b c = SApp (SApp TLeaf (SApp (SApp TLeaf (SVar a)) (SVar b))) (SVar c)
composeBody f g x = SApp (SVar f) (SApp (SVar g) (SVar x))
isFree :: String -> TricuAST -> Bool isFree :: String -> TricuAST -> Bool
isFree x = Set.member x . freeVars isFree x = Set.member x . freeVars
freeVars :: TricuAST -> Set.Set String freeVars :: TricuAST -> Set.Set String
freeVars (SVar v ) = Set.singleton v freeVars (SVar v ) = Set.singleton v
freeVars (SList s ) = foldMap freeVars s
freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v
freeVars (SApp f a ) = freeVars f <> freeVars a
freeVars (TFork l r ) = freeVars l <> freeVars r
freeVars (SDef _ _ b) = freeVars b
freeVars (TStem t ) = freeVars t
freeVars (SInt _ ) = Set.empty freeVars (SInt _ ) = Set.empty
freeVars (SStr _ ) = Set.empty freeVars (SStr _ ) = Set.empty
freeVars (SList s ) = foldMap freeVars s
freeVars (SApp f a ) = freeVars f <> freeVars a
freeVars TLeaf = Set.empty freeVars TLeaf = Set.empty
freeVars (SDef _ _ b) = freeVars b
freeVars (TStem t ) = freeVars t
freeVars (TFork l r ) = freeVars l <> freeVars r
freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v
freeVars _ = Set.empty freeVars _ = Set.empty
reorderDefs :: Env -> [TricuAST] -> [TricuAST] reorderDefs :: Env -> [TricuAST] -> [TricuAST]
@ -151,7 +131,7 @@ reorderDefs env defs
graph = buildDepGraph defsOnly graph = buildDepGraph defsOnly
sortedDefs = sortDeps graph sortedDefs = sortDeps graph
defMap = Map.fromList [(name, def) | def@(SDef name _ _) <- defsOnly] defMap = Map.fromList [(name, def) | def@(SDef name _ _) <- defsOnly]
orderedDefs = map (defMap Map.!) sortedDefs orderedDefs = map (\name -> defMap Map.! name) sortedDefs
freeVarsDefs = foldMap snd defsWithFreeVars freeVarsDefs = foldMap snd defsWithFreeVars
freeVarsOthers = foldMap freeVars others freeVarsOthers = foldMap freeVars others
@ -159,8 +139,8 @@ reorderDefs env defs
validNames = Set.fromList defNames `Set.union` Set.fromList (Map.keys env) validNames = Set.fromList defNames `Set.union` Set.fromList (Map.keys env)
missingDeps = Set.toList (allFreeVars `Set.difference` validNames) missingDeps = Set.toList (allFreeVars `Set.difference` validNames)
isDef SDef {} = True isDef (SDef _ _ _) = True
isDef _ = False isDef _ = False
buildDepGraph :: [TricuAST] -> Map.Map String (Set.Set String) buildDepGraph :: [TricuAST] -> Map.Map String (Set.Set String)
buildDepGraph topDefs buildDepGraph topDefs

@ -41,6 +41,7 @@ tricuLexer = do
, try stringLiteral , try stringLiteral
, assign , assign
, colon , colon
, backslash
, openParen , openParen
, closeParen , closeParen
, openBracket , openBracket
@ -93,6 +94,9 @@ assign = char '=' $> LAssign
colon :: Lexer LToken colon :: Lexer LToken
colon = char ':' $> LColon colon = char ':' $> LColon
backslash :: Lexer LToken
backslash = char '\\' $> LBackslash
openParen :: Lexer LToken openParen :: Lexer LToken
openParen = char '(' $> LOpenParen openParen = char '(' $> LOpenParen
@ -122,22 +126,7 @@ integerLiteral = do
stringLiteral :: Lexer LToken stringLiteral :: Lexer LToken
stringLiteral = do stringLiteral = do
char '"' char '"'
content <- manyTill Lexer.charLiteral (char '"') content <- many (noneOf ['"'])
char '"' --"
return (LStringLiteral content) return (LStringLiteral content)
charLiteral :: Lexer Char
charLiteral = escapedChar <|> normalChar
where
normalChar = noneOf ['"', '\\']
escapedChar = do
void $ char '\\'
c <- oneOf ['n', 't', 'r', 'f', 'b', '\\', '"', '\'']
return $ case c of
'n' -> '\n'
't' -> '\t'
'r' -> '\r'
'f' -> '\f'
'b' -> '\b'
'\\' -> '\\'
'"' -> '"'
'\'' -> '\''

@ -63,17 +63,18 @@ main = do
case args of case args of
Repl -> do Repl -> do
putStrLn "Welcome to the tricu REPL" putStrLn "Welcome to the tricu REPL"
putStrLn "You may exit with `CTRL+D` or the `!exit` command." putStrLn "You can exit with `CTRL+D` or the `!exit` command.`"
putStrLn "Try typing `!` with tab completion for more commands."
repl Map.empty repl Map.empty
Evaluate { file = filePaths, form = form } -> do Evaluate { file = filePaths, form = form } -> do
result <- case filePaths of result <- case filePaths of
[] -> runTricuT <$> getContents [] -> do
t <- getContents
pure $ runTricu t
(filePath:restFilePaths) -> do (filePath:restFilePaths) -> do
initialEnv <- evaluateFile filePath initialEnv <- evaluateFile filePath
finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths
pure $ mainResult finalEnv pure $ mainResult finalEnv
let fRes = formatT form result let fRes = formatResult form result
putStr fRes putStr fRes
TDecode { file = filePaths } -> do TDecode { file = filePaths } -> do
value <- case filePaths of value <- case filePaths of
@ -81,48 +82,8 @@ main = do
(filePath:_) -> readFile filePath (filePath:_) -> readFile filePath
putStrLn $ decodeResult $ result $ evalTricu Map.empty $ parseTricu value putStrLn $ decodeResult $ result $ evalTricu Map.empty $ parseTricu value
-- Simple interfaces runTricu :: String -> T
runTricu input =
runTricu :: String -> String
runTricu = formatT TreeCalculus . runTricuT
runTricuT :: String -> T
runTricuT input =
let asts = parseTricu input let asts = parseTricu input
finalEnv = evalTricu Map.empty asts finalEnv = evalTricu Map.empty asts
in result finalEnv in result finalEnv
runTricuEnv :: Env -> String -> String
runTricuEnv env = formatT TreeCalculus . runTricuTEnv env
runTricuTEnv :: Env -> String -> T
runTricuTEnv env input =
let asts = parseTricu input
finalEnv = evalTricu env asts
in result finalEnv
runTricuWithEnvT :: String -> (Env, T)
runTricuWithEnvT input =
let asts = parseTricu input
finalEnv = evalTricu Map.empty asts
in (finalEnv, result finalEnv)
runTricuWithEnv :: String -> (Env, String)
runTricuWithEnv input =
let asts = parseTricu input
finalEnv = evalTricu Map.empty asts
res = result finalEnv
in (finalEnv, formatT TreeCalculus res)
runTricuEnvWithEnvT :: Env -> String -> (Env, T)
runTricuEnvWithEnvT env input =
let asts = parseTricu input
finalEnv = evalTricu env asts
in (finalEnv, result finalEnv)
runTricuEnvWithEnv :: Env -> String -> (Env, String)
runTricuEnvWithEnv env input =
let asts = parseTricu input
finalEnv = evalTricu env asts
res = result finalEnv
in (finalEnv, formatT TreeCalculus res)

@ -130,6 +130,7 @@ parseFunctionM = do
parseLambdaM :: ParserM TricuAST parseLambdaM :: ParserM TricuAST
parseLambdaM = do parseLambdaM = do
let ident = (\case LIdentifier _ -> True; _ -> False) let ident = (\case LIdentifier _ -> True; _ -> False)
_ <- satisfyM (== LBackslash)
params <- some (satisfyM ident) params <- some (satisfyM ident)
_ <- satisfyM (== LColon) _ <- satisfyM (== LColon)
scnParserM scnParserM
@ -144,11 +145,11 @@ parseLambdaExpressionM = choice
parseAtomicLambdaM :: ParserM TricuAST parseAtomicLambdaM :: ParserM TricuAST
parseAtomicLambdaM = choice parseAtomicLambdaM = choice
[ try parseLambdaM [ parseVarM
, parseVarM
, parseTreeLeafM , parseTreeLeafM
, parseLiteralM , parseLiteralM
, parseListLiteralM , parseListLiteralM
, try parseLambdaM
, between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM , between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM
] ]
@ -204,8 +205,7 @@ parseTreeLeafOrParenthesizedM = choice
parseAtomicM :: ParserM TricuAST parseAtomicM :: ParserM TricuAST
parseAtomicM = choice parseAtomicM = choice
[ try parseLambdaM [ parseVarM
, parseVarM
, parseTreeLeafM , parseTreeLeafM
, parseListLiteralM , parseListLiteralM
, parseGroupedM , parseGroupedM

@ -6,23 +6,24 @@ import Lexer
import Parser import Parser
import Research import Research
import Control.Exception (IOException, SomeException, catch import Control.Exception (IOException, SomeException, catch, displayException)
, displayException)
import Control.Monad (forM_) import Control.Monad (forM_)
import Control.Monad.Catch (handle, MonadCatch)
import Control.Monad.IO.Class (liftIO) import Control.Monad.IO.Class (liftIO)
import Control.Monad.Catch (handle, MonadCatch)
import Control.Monad.Trans.Class (lift) import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.Maybe (MaybeT(..), runMaybeT) import Control.Monad.Trans.Maybe (MaybeT(..), runMaybeT)
import Data.Char (isSpace, isUpper) import Data.Char (isSpace, isUpper)
import Data.List (dropWhile, dropWhileEnd, isPrefixOf) import Data.List ( dropWhile
import Data.Version (showVersion) , dropWhileEnd
import Paths_tricu (version) , isPrefixOf)
import System.Console.Haskeline import System.Console.Haskeline
import Paths_tricu (version)
import qualified Data.Map as Map import Data.Version (showVersion)
import qualified Data.Text as T import qualified Data.Text as T
import qualified Data.Text.IO as T import qualified Data.Text.IO as T
import qualified Data.Map as Map
repl :: Env -> IO () repl :: Env -> IO ()
repl env = runInputT settings (withInterrupt (loop env Decode)) repl env = runInputT settings (withInterrupt (loop env Decode))
where where
@ -152,7 +153,7 @@ repl env = runInputT settings (withInterrupt (loop env Decode))
newEnv = evalTricu env asts newEnv = evalTricu env asts
case Map.lookup "!result" newEnv of case Map.lookup "!result" newEnv of
Just r -> do Just r -> do
putStrLn $ "tricu > " ++ formatT form r putStrLn $ "tricu > " ++ formatResult form r
Nothing -> pure () Nothing -> pure ()
return newEnv return newEnv
@ -182,7 +183,7 @@ repl env = runInputT settings (withInterrupt (loop env Decode))
liftIO $ writeFile filepath "" liftIO $ writeFile filepath ""
outputStrLn "File created..." outputStrLn "File created..."
forM_ definitions $ \(name, value) -> do forM_ definitions $ \(name, value) -> do
let content = name ++ " = " ++ formatT TreeCalculus value ++ "\n" let content = name ++ " = " ++ formatResult TreeCalculus value ++ "\n"
outputStrLn $ "Writing definition: " ++ name ++ " with length " ++ show (length content) outputStrLn $ "Writing definition: " ++ name ++ " with length " ++ show (length content)
liftIO $ appendFile filepath content liftIO $ appendFile filepath content
outputStrLn $ "Saved " ++ show (length definitions) ++ " definitions to " ++ p outputStrLn $ "Saved " ++ show (length definitions) ++ " definitions to " ++ p

@ -15,7 +15,7 @@ data T = Leaf | Stem T | Fork T T
-- Abstract Syntax Tree for tricu -- Abstract Syntax Tree for tricu
data TricuAST data TricuAST
= SVar String = SVar String
| SInt Integer | SInt Int
| SStr String | SStr String
| SList [TricuAST] | SList [TricuAST]
| SDef String [String] TricuAST | SDef String [String] TricuAST
@ -33,11 +33,12 @@ data LToken
= LKeywordT = LKeywordT
| LIdentifier String | LIdentifier String
| LNamespace String | LNamespace String
| LIntegerLiteral Integer | LIntegerLiteral Int
| LStringLiteral String | LStringLiteral String
| LAssign | LAssign
| LColon | LColon
| LDot | LDot
| LBackslash
| LOpenParen | LOpenParen
| LCloseParen | LCloseParen
| LOpenBracket | LOpenBracket
@ -84,9 +85,9 @@ _not = Fork (Fork _true (Fork Leaf _false)) Leaf
-- Marshalling -- Marshalling
ofString :: String -> T ofString :: String -> T
ofString str = ofList $ map (ofNumber . toInteger . fromEnum) str ofString str = ofList $ map (ofNumber . fromEnum) str
ofNumber :: Integer -> T ofNumber :: Int -> T
ofNumber 0 = Leaf ofNumber 0 = Leaf
ofNumber n = ofNumber n =
Fork Fork
@ -96,7 +97,7 @@ ofNumber n =
ofList :: [T] -> T ofList :: [T] -> T
ofList = foldr Fork Leaf ofList = foldr Fork Leaf
toNumber :: T -> Either String Integer toNumber :: T -> Either String Int
toNumber Leaf = Right 0 toNumber Leaf = Right 0
toNumber (Fork Leaf rest) = case toNumber rest of toNumber (Fork Leaf rest) = case toNumber rest of
Right n -> Right (2 * n) Right n -> Right (2 * n)
@ -108,7 +109,7 @@ toNumber _ = Left "Invalid Tree Calculus number"
toString :: T -> Either String String toString :: T -> Either String String
toString tc = case toList tc of toString tc = case toList tc of
Right list -> traverse (fmap (toEnum . fromInteger) . toNumber) list Right list -> traverse (fmap toEnum . toNumber) list
Left err -> Left "Invalid Tree Calculus string" Left err -> Left "Invalid Tree Calculus string"
toList :: T -> Either String [T] toList :: T -> Either String [T]
@ -119,13 +120,13 @@ toList (Fork x rest) = case toList rest of
toList _ = Left "Invalid Tree Calculus list" toList _ = Left "Invalid Tree Calculus list"
-- Outputs -- Outputs
formatT :: EvaluatedForm -> T -> String formatResult :: EvaluatedForm -> T -> String
formatT TreeCalculus = toSimpleT . show formatResult TreeCalculus = toSimpleT . show
formatT FSL = show formatResult FSL = show
formatT AST = show . toAST formatResult AST = show . toAST
formatT Ternary = toTernaryString formatResult Ternary = toTernaryString
formatT Ascii = toAscii formatResult Ascii = toAscii
formatT Decode = decodeResult formatResult Decode = decodeResult
toSimpleT :: String -> String toSimpleT :: String -> String
toSimpleT s = T.unpack toSimpleT s = T.unpack
@ -166,7 +167,7 @@ decodeResult tc =
(_, _, Right n) -> show n (_, _, Right n) -> show n
(_, Right xs@(_:_), _) -> "[" ++ intercalate ", " (map decodeResult xs) ++ "]" (_, Right xs@(_:_), _) -> "[" ++ intercalate ", " (map decodeResult xs) ++ "]"
(_, Right [], _) -> "[]" (_, Right [], _) -> "[]"
_ -> formatT TreeCalculus tc _ -> formatResult TreeCalculus tc
where where
isCommonChar c = isCommonChar c =
let n = fromEnum c let n = fromEnum c

@ -21,8 +21,8 @@ import qualified Data.Set as Set
main :: IO () main :: IO ()
main = defaultMain tests main = defaultMain tests
tricuTestString :: String -> String runTricu :: String -> String
tricuTestString s = show $ result (evalTricu Map.empty $ parseTricu s) runTricu s = show $ result (evalTricu Map.empty $ parseTricu s)
tests :: TestTree tests :: TestTree
tests = testGroup "Tricu Tests" tests = testGroup "Tricu Tests"
@ -51,22 +51,7 @@ lexer = testGroup "Lexer Tests"
, testCase "Lex escaped characters in strings" $ do , testCase "Lex escaped characters in strings" $ do
let input = "\"hello\\nworld\"" let input = "\"hello\\nworld\""
expect = Right [LStringLiteral "hello\nworld"] expect = Right [LStringLiteral "hello\\nworld"]
runParser tricuLexer "" input @?= expect
, testCase "Lex multiple escaped characters in strings" $ do
let input = "\"tab:\\t newline:\\n quote:\\\" backslash:\\\\\""
expect = Right [LStringLiteral "tab:\t newline:\n quote:\" backslash:\\"]
runParser tricuLexer "" input @?= expect
, testCase "Lex escaped characters in string literals" $ do
let input = "x = \"line1\\nline2\\tindented\""
expect = Right [LIdentifier "x", LAssign, LStringLiteral "line1\nline2\tindented"]
runParser tricuLexer "" input @?= expect
, testCase "Lex empty string with escape sequence" $ do
let input = "\"\\\"\""
expect = Right [LStringLiteral "\""]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex mixed literals" $ do , testCase "Lex mixed literals" $ do
@ -102,7 +87,7 @@ parser = testGroup "Parser Tests"
Right _ -> assertFailure "Expected failure when trying to assign the value of T" Right _ -> assertFailure "Expected failure when trying to assign the value of T"
, testCase "Parse function definitions" $ do , testCase "Parse function definitions" $ do
let input = "x = (a b c : a)" let input = "x = (\\a b c : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a")))) expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
parseSingle input @?= expect parseSingle input @?= expect
@ -122,7 +107,7 @@ parser = testGroup "Parser Tests"
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse function with applications" $ do , testCase "Parse function with applications" $ do
let input = "f = (x : t x)" let input = "f = (\\x : t x)"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x"))) expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
parseSingle input @?= expect parseSingle input @?= expect
@ -164,22 +149,22 @@ parser = testGroup "Parser Tests"
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested parentheses in function body" $ do , testCase "Parse nested parentheses in function body" $ do
let input = "f = (x : t (t (t t)))" let input = "f = (\\x : t (t (t t)))"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf)))) expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse lambda abstractions" $ do , testCase "Parse lambda abstractions" $ do
let input = "(a : a)" let input = "(\\a : a)"
expect = (SLambda ["a"] (SVar "a")) expect = (SLambda ["a"] (SVar "a"))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse multiple arguments to lambda abstractions" $ do , testCase "Parse multiple arguments to lambda abstractions" $ do
let input = "x = (a b : a)" let input = "x = (\\a b : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a"))) expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Grouping T terms with parentheses in function application" $ do , testCase "Grouping T terms with parentheses in function application" $ do
let input = "x = (a : a)\nx (t)" let input = "x = (\\a : a)\nx (t)"
expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf] expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
parseTricu input @?= expect parseTricu input @?= expect
@ -266,7 +251,7 @@ simpleEvaluation = testGroup "Evaluation Tests"
, testCase "Immutable definitions" $ do , testCase "Immutable definitions" $ do
let input = "x = t t\nx = t\nx" let input = "x = t t\nx = t\nx"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
result <- try (evaluate (tricuTestString input)) :: IO (Either SomeException String) result <- try (evaluate (runTricu input)) :: IO (Either SomeException String)
case result of case result of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected evaluation error" Right _ -> assertFailure "Expected evaluation error"
@ -274,7 +259,7 @@ simpleEvaluation = testGroup "Evaluation Tests"
, testCase "Apply identity to Boolean Not" $ do , testCase "Apply identity to Boolean Not" $ do
let not = "(t (t (t t) (t t t)) t)" let not = "(t (t (t t) (t t t)) t)"
let input = "x = (a : a)\nx " ++ not let input = "x = (\\a : a)\nx " ++ not
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
] ]
@ -282,85 +267,85 @@ simpleEvaluation = testGroup "Evaluation Tests"
lambdas :: TestTree lambdas :: TestTree
lambdas = testGroup "Lambda Evaluation Tests" lambdas = testGroup "Lambda Evaluation Tests"
[ testCase "Lambda Identity Function" $ do [ testCase "Lambda Identity Function" $ do
let input = "id = (x : x)\nid t" let input = "id = (\\x : x)\nid t"
tricuTestString input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda Constant Function (K combinator)" $ do , testCase "Lambda Constant Function (K combinator)" $ do
let input = "k = (x y : x)\nk t (t t)" let input = "k = (\\x y : x)\nk t (t t)"
tricuTestString input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda Application with Variable" $ do , testCase "Lambda Application with Variable" $ do
let input = "id = (x : x)\nval = t t\nid val" let input = "id = (\\x : x)\nval = t t\nid val"
tricuTestString input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda Application with Multiple Arguments" $ do , testCase "Lambda Application with Multiple Arguments" $ do
let input = "apply = (f x y : f x y)\nk = (a b : a)\napply k t (t t)" let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)"
tricuTestString input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Nested Lambda Application" $ do , testCase "Nested Lambda Application" $ do
let input = "apply = (f x y : f x y)\nid = (x : x)\napply (f x : f x) id t" let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t"
tricuTestString input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with a complex body" $ do , testCase "Lambda with a complex body" $ do
let input = "f = (x : t (t x))\nf t" let input = "f = (\\x : t (t x))\nf t"
tricuTestString input @?= "Stem (Stem Leaf)" runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda returning a function" $ do , testCase "Lambda returning a function" $ do
let input = "f = (x : (y : x))\ng = f t\ng (t t)" let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)"
tricuTestString input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with Shadowing" $ do , testCase "Lambda with Shadowing" $ do
let input = "f = (x : (x : x))\nf t (t t)" let input = "f = (\\x : (\\x : x))\nf t (t t)"
tricuTestString input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda returning another lambda" $ do , testCase "Lambda returning another lambda" $ do
let input = "k = (x : (y : x))\nk_app = k t\nk_app (t t)" let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)"
tricuTestString input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with free variables" $ do , testCase "Lambda with free variables" $ do
let input = "y = t t\nf = (x : y)\nf t" let input = "y = t t\nf = (\\x : y)\nf t"
tricuTestString input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "SKI Composition" $ do , testCase "SKI Composition" $ do
let input = "s = (x y z : x z (y z))\nk = (x y : x)\ni = (x : x)\ncomp = s k i\ncomp t (t t)" let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)"
tricuTestString input @?= "Stem (Stem Leaf)" runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda with multiple parameters and application" $ do , testCase "Lambda with multiple parameters and application" $ do
let input = "f = (a b c : t a b c)\nf t (t t) (t t t)" let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)"
tricuTestString input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda with nested application in the body" $ do , testCase "Lambda with nested application in the body" $ do
let input = "f = (x : t (t (t x)))\nf t" let input = "f = (\\x : t (t (t x)))\nf t"
tricuTestString input @?= "Stem (Stem (Stem Leaf))" runTricu input @?= "Stem (Stem (Stem Leaf))"
, testCase "Lambda returning a function and applying it" $ do , testCase "Lambda returning a function and applying it" $ do
let input = "f = (x : (y : t x y))\ng = f t\ng (t t)" let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)"
tricuTestString input @?= "Fork Leaf (Stem Leaf)" runTricu input @?= "Fork Leaf (Stem Leaf)"
, testCase "Lambda applying a variable" $ do , testCase "Lambda applying a variable" $ do
let input = "id = (x : x)\na = t t\nid a" let input = "id = (\\x : x)\na = t t\nid a"
tricuTestString input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Nested lambda abstractions in the same expression" $ do , testCase "Nested lambda abstractions in the same expression" $ do
let input = "f = (x : (y : x y))\ng = (z : z)\nf g t" let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t"
tricuTestString input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda applied to string literal" $ do , testCase "Lambda applied to string literal" $ do
let input = "f = (x : x)\nf \"hello\"" let input = "f = (\\x : x)\nf \"hello\""
tricuTestString input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))" runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
, testCase "Lambda applied to integer literal" $ do , testCase "Lambda applied to integer literal" $ do
let input = "f = (x : x)\nf 42" let input = "f = (\\x : x)\nf 42"
tricuTestString input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))" runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
, testCase "Lambda applied to list literal" $ do , testCase "Lambda applied to list literal" $ do
let input = "f = (x : x)\nf [t (t t)]" let input = "f = (\\x : x)\nf [t (t t)]"
tricuTestString input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)" runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
, testCase "Lambda containing list literal" $ do , testCase "Lambda containing list literal" $ do
let input = "(a : [(a)]) 1" let input = "(\\a : [(a)]) 1"
tricuTestString input @?= "Fork (Fork (Stem Leaf) Leaf) Leaf" runTricu input @?= "Fork (Fork (Stem Leaf) Leaf) Leaf"
] ]
providedLibraries :: TestTree providedLibraries :: TestTree
@ -434,7 +419,7 @@ providedLibraries = testGroup "Library Tests"
, testCase "List map" $ do , testCase "List map" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/list.tri"
let input = "head (tail (map (a : (t t t)) [(t) (t) (t)]))" let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf result env @?= Fork Leaf Leaf

@ -1,9 +1,9 @@
-- This is a tricu comment! -- This is a tricu comment!
-- t (t t) (t (t t t)) -- t (t t) (t (t t t))
-- t (t t t) (t t) -- t (t t t) (t t)
-- x = (a : a) -- x = (\a : a)
main = t (t t) t -- Fork (Stem Leaf) Leaf main = t (t t) t -- Fork (Stem Leaf) Leaf
-- t t -- t t
-- x -- x
-- x = (a : a) -- x = (\a : a)
-- t -- t

@ -1 +1 @@
main = (x : x) t main = (\x : x) t

@ -1,2 +1,2 @@
x = map (i : append "Successfully concatenated " i) [("two strings!")] x = map (\i : append "Successfully concatenated " i) [("two strings!")]
main = equal? x [("Successfully concatenated two strings!")] main = equal? x [("Successfully concatenated two strings!")]

@ -1,21 +1,21 @@
compose = f g x : f (g x) compose = \f g x : f (g x)
succ = y (self : succ = y (\self :
triage triage
1 1
t t
(triage (triage
(t (t t)) (t (t t))
(_ tail : t t (self tail)) (\_ tail : t t (self tail))
t)) t))
size = (x : size = (\x :
(y (self x : (y (\self x :
compose succ compose succ
(triage (triage
(x : x) (\x : x)
self self
(x y : compose (self x) (self y)) (\x y : compose (self x) (self y))
x)) x 0)) x)) x 0))
size size size size

@ -1 +1 @@
head (map (i : append "String " i) [("test!")]) head (map (\i : append "String " i) [("test!")])

@ -1 +1 @@
y = x : x y = \x : x

@ -1,7 +1,7 @@
cabal-version: 1.12 cabal-version: 1.12
name: tricu name: tricu
version: 0.19.0 version: 0.18.0
description: A micro-language for exploring Tree Calculus description: A micro-language for exploring Tree Calculus
author: James Eversole author: James Eversole
maintainer: james@eversole.co maintainer: james@eversole.co