Compare commits

..

No commits in common. "main" and "0.6.0-8995efce15" have entirely different histories.

45 changed files with 534 additions and 1269 deletions

View File

@ -28,6 +28,16 @@ jobs:
restore-keys: | restore-keys: |
cabal- cabal-
- name: Set up cache for Nix
uses: actions/cache@v4
with:
path: |
/nix/store
/nix/var/nix/cache
key: nix-${{ hashFiles('flake.lock') }}
restore-keys: |
nix-
- name: Initialize Cabal and update package list - name: Initialize Cabal and update package list
run: | run: |
nix develop --command cabal update nix develop --command cabal update
@ -48,18 +58,29 @@ jobs:
with: with:
fetch-depth: 0 fetch-depth: 0
- name: Build and shrink binary - name: Set up cache for Nix
uses: actions/cache@v4
with:
path: |
/nix/store
/nix/var/nix/cache
key: nix-${{ hashFiles('flake.lock') }}
restore-keys: |
nix-
- name: Build binary
run: | run: |
nix build nix build
cp -L ./result/bin/tricu ./tricu ls -alh ./result/bin/tricu
chmod 755 ./tricu
nix develop --command upx ./tricu - name: Setup go for release actoin
uses: actions/setup-go@v5
with:
go-version: '>=1.20.1'
- name: Release binary - name: Release binary
uses: akkuman/gitea-release-action@v1 uses: https://gitea.com/actions/release-action@main
with: with:
files: |- files: |-
./tricu ./result/bin/tricu
token: '${{ secrets.RELEASE_TOKEN }}' api_key: '${{ secrets.RELEASE_TOKEN }}'
body: '${{ gitea.event.head_commit.message }}'
prerelease: true

1
.gitignore vendored
View File

@ -9,4 +9,3 @@
WD WD
bin/ bin/
dist* dist*
.tricu_history

View File

@ -2,60 +2,43 @@
## Introduction ## Introduction
tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. It is fundamentally based on the application of [Tree Calculus](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf) terms, but minimal syntax sugar is included to provide a useful programming tool. tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. [I'm](https://eversole.co) developing tricu to further research the possibilities offered by the various forms of [Tree Calculi](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf).
*tricu is under active development and you should expect breaking changes with every commit.* tricu offers minimal syntax sugar yet manages to provide a complete, intuitive, and familiar programming environment. There is great power in simplicity. tricu offers:
tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`. 1. `t` operator behaving by the rules of Tree Calculus
1. Function definitions/assignments
1. Lambda abstractions eliminated to Tree Calculus forms
1. List, Number, and String literals
1. Parentheses for grouping function application
## Features These features move us cleanly out of the [turing tarpit](https://en.wikipedia.org/wiki/Turing_tarpit) territory that you may find yourself in if you try working only with the `t` operator.
- Tree Calculus operator: `t` tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`. This project was named "sapling" until I discovered the name is already being used for other (completely unrelated) programming language development projects.
- Assignments: `x = t t`
- Immutable definitions
- Lambda abstraction syntax: `id = (\a : a)`
- List, Number, and String literals: `[(2) ("Hello")]`
- Function application: `not (not false)`
- Higher order/first-class functions: `map (\a : append a "!") [("Hello")]`
- Intensionality blurs the distinction between functions and data (see REPL examples)
- Simple module system for code organization
## REPL examples ## What does it look like?
``` ```
tricu < -- Anything after `--` on a single line is a comment tricu < -- Anything after `--` on a single line is a comment
tricu < id = (\a : a) -- Lambda abstraction is eliminated to tree calculus terms tricu < id = (\a : a) -- Lambda abstraction is eliminated to tree calculus terms
tricu < head (map (\i : append i " world!") [("Hello, ")]) tricu < head (map (\i : lconcat i " world!") [("Hello, ")])
tricu > "Hello, world!" tricu > "Hello, world!"
tricu < id (head (map (\i : append i " world!") [("Hello, ")])) tricu < id (head (map (\i : lconcat i " world!") [("Hello, ")]))
tricu > "Hello, world!" tricu > "Hello, world!"
tricu < -- Intensionality! We can inspect the structure of a function or data. tricu < -- Intensionality! We can inspect the structure of a function.
tricu < triage = (\a b c : t (t a b) c) tricu < triage = (\a b c : t (t a b) c)
tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork") tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork")
tricu < test (t t) tricu < test (t t)
tricu > "Stem" tricu > "Stem"
tricu < -- We can even convert a term back to source code (/demos/toSource.tri) tricu < -- We can even write a function to convert a term back to source code
tricu < toSource not? tricu < toSource not?
tricu > "(t (t (t t) (t t t)) (t t (t t t)))" tricu > "(t (t (t t) (t t t)) (t t (t t t)))"
tricu < -- or calculate its size (/demos/size.tri)
tricu < size not?
tricu > 12
tricu < -- REPL Commands:
tricu < !definitions -- Lists all available definitions
tricu < !output -- Change output format (Tree, FSL, AST, etc.)
tricu < !import -- Import definitions from a file
tricu < !exit -- Exit the REPL
tricu < !clear -- ANSI screen clear
tricu < !save -- Save all REPL definitions to a file that you can !import
tricu < !reset -- Clear all REPL definitions
tricu < !version -- Print tricu version
``` ```
## Installation and Use ## Installation and Use
You can easily build and run this project using [Nix](https://nixos.org/download/). You can easily build and/or run this project using [Nix](https://nixos.org/download/).
- Quick Start (REPL): - Quick Start (REPL):
- `nix run git+https://git.eversole.co/James/tricu` - `nix run git+https://git.eversole.co/James/tricu`
@ -82,7 +65,7 @@ tricu eval [OPTIONS]
-f --file=FILE Input file path(s) for evaluation. -f --file=FILE Input file path(s) for evaluation.
Defaults to stdin. Defaults to stdin.
-t --form=FORM Optional output form: (tree|fsl|ast|ternary|ascii|decode). -t --form=FORM Optional output form: (tree|fsl|ast|ternary|ascii).
Defaults to tricu-compatible `t` tree form. Defaults to tricu-compatible `t` tree form.
tricu decode [OPTIONS] tricu decode [OPTIONS]
@ -92,14 +75,8 @@ tricu decode [OPTIONS]
Defaults to stdin. Defaults to stdin.
``` ```
## Collaborating
I am happy to accept issue reports, pull requests, or questions about tricu [via email](mailto:james@eversole.co).
If you want to collaborate but don't want to email back-and-forth, please reach out via email once to let me know and I will provision a git.eversole.co account for you.
## Acknowledgements ## Acknowledgements
Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog). Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog).
[treecalcul.us](https://treecalcul.us) is an excellent website with an intuitive Tree Calculus code playground created by [Johannes Bader](https://johannes-bader.com/) that introduced me to Tree Calculus. [treecalcul.us](https://treecalcul.us) is an excellent website with an intuitive playground created by [Johannes Bader](https://johannes-bader.com/) that introduced me to Tree Calculus. If tricu sounds interesting but compiling this repo sounds like a hassle, you should check out his site.

View File

@ -1,40 +1,24 @@
!import "../lib/base.tri" !Local false = t
!import "../lib/list.tri" !Local true = t t
main = lambdaEqualsTC triage = (\a b c : t (t a b) c)
-- We represent `false` with a Leaf and `true` with a Stem Leaf matchBool = (\ot of : triage
demo_false = t
demo_true = t t
-- Tree Calculus representation of the Boolean `not` function
not_TC? = t (t (t t) (t t t)) (t t (t t t))
-- /demos/toSource.tri contains an explanation of `triage`
demo_triage = \a b c : t (t a b) c
demo_matchBool = (\ot of : demo_triage
of of
(\_ : ot) (\_ : ot)
(\_ _ : ot) (\_ _ : ot)
) )
-- Lambda representation of the Boolean `not` function
not_Lambda? = demo_matchBool demo_false demo_true
-- Since tricu eliminates Lambda terms to SKI combinators, the tree form of many not_TC? = t (t (t t) (t t t)) (t t (t t t))
-- functions defined via Lambda terms are larger than the most efficient TC not_Lambda? = matchBool false true
-- representation. Between different languages that evaluate to tree calculus
-- terms, the exact implementation of Lambda elimination may differ and lead
-- to different tree representations even if they share extensional behavior.
-- Let's see if these are the same: areEqual? = equal not_TC not_Lambda
lambdaEqualsTC = equal? not_TC? not_Lambda?
-- Here are some checks to verify their extensional behavior is the same: true_TC? = not_TC false
true_TC? = not_TC? demo_false false_TC? = not_TC true
false_TC? = not_TC? demo_true
true_Lambda? = not_Lambda? demo_false true_Lambda? = not_Lambda false
false_Lambda? = not_Lambda? demo_true false_Lambda? = not_Lambda true
bothTrueEqual? = equal? true_TC? true_Lambda? areTrueEqual? = equal true_TC true_Lambda
bothFalseEqual? = equal? false_TC? false_Lambda? areFalseEqual? = equal false_TC false_Lambda

View File

@ -1,13 +1,11 @@
!import "../lib/base.tri" Lib
!import "../lib/list.tri" !Local
main = exampleTwo
-- Level Order Traversal of a labelled binary tree -- Level Order Traversal of a labelled binary tree
-- Objective: Print each "level" of the tree on a separate line -- Objective: Print each "level" of the tree on a separate line
-- --
-- We model labelled binary trees as nested lists where values act as labels. We -- NOTICE: This demo relies on tricu base library functions
--
-- We model labelled binary trees as sublists where values act as labels. We
-- require explicit notation of empty nodes. Empty nodes can be represented -- require explicit notation of empty nodes. Empty nodes can be represented
-- with an empty list, `[]`, which evaluates to a single node `t`. -- with an empty list, `[]`, which is equivalent to a single node `t`.
-- --
-- Example tree inputs: -- Example tree inputs:
-- [("1") [("2") [("4") t t] t] [("3") [("5") t t] [("6") t t]]]] -- [("1") [("2") [("4") t t] t] [("3") [("5") t t] [("6") t t]]]]
@ -17,42 +15,43 @@ main = exampleTwo
-- 2 3 -- 2 3
-- / / \ -- / / \
-- 4 5 6 -- 4 5 6
--
label = \node : head node label = (\node : head node)
left = (\node : if (emptyList? node) left = (\node : if (emptyList node)
[] []
(if (emptyList? (tail node)) (if (emptyList (tail node))
[] []
(head (tail node)))) (head (tail node))))
right = (\node : if (emptyList? node) right = (\node : if (emptyList node)
[] []
(if (emptyList? (tail node)) (if (emptyList (tail node))
[] []
(if (emptyList? (tail (tail node))) (if (emptyList (tail (tail node)))
[] []
(head (tail (tail node)))))) (head (tail (tail node))))))
processLevel = y (\self queue : if (emptyList? queue) processLevel = y (\self queue : if (emptyList queue)
[] []
(pair (map label queue) (self (filter (pair (map label queue) (self (filter
(\node : not? (emptyList? node)) (\node : not (emptyList node))
(append (map left queue) (map right queue)))))) (lconcat (map left queue) (map right queue))))))
levelOrderTraversal_ = \a : processLevel (t a t) levelOrderTraversal_ = (\a : processLevel (t a t))
toLineString = y (\self levels : if (emptyList? levels) toLineString = y (\self levels : if (emptyList levels)
"" ""
(append (lconcat
(append (map (\x : append x " ") (head levels)) "") (lconcat (map (\x : lconcat x " ") (head levels)) "")
(if (emptyList? (tail levels)) "" (append (t (t 10 t) t) (self (tail levels)))))) (if (emptyList (tail levels)) "" (lconcat (t (t 10 t) t) (self (tail levels))))))
levelOrderToString = \s : toLineString (levelOrderTraversal_ s) levelOrderToString = (\s : toLineString (levelOrderTraversal_ s))
flatten = foldl (\acc x : append acc x) "" flatten = foldl (\acc x : lconcat acc x) ""
levelOrderTraversal = \s : append (t 10 t) (flatten (levelOrderToString s)) levelOrderTraversal = (\s : lconcat (t 10 t) (flatten (levelOrderToString s)))
exampleOne = levelOrderTraversal [("1") exampleOne = levelOrderTraversal [("1")
[("2") [("4") t t] t] [("2") [("4") t t] t]
@ -62,3 +61,5 @@ exampleTwo = levelOrderTraversal [("1")
[("2") [("4") [("8") t t] [("9") t t]] [("2") [("4") [("8") t t] [("9") t t]]
[("6") [("10") t t] [("12") t t]]] [("6") [("10") t t] [("12") t t]]]
[("3") [("5") [("11") t t] t] [("7") t t]]] [("3") [("5") [("11") t t] t] [("7") t t]]]
exampleTwo

View File

@ -1,13 +0,0 @@
!import "../lib/base.tri" !Local
!import "../lib/list.tri" !Local
main = size size
size = (\x :
(y (\self x :
compose succ
(triage
(\x : x)
self
(\x y : compose (self x) (self y))
x)) x 0))

View File

@ -1,18 +1,14 @@
!import "../lib/base.tri" !Local
!import "../lib/list.tri" !Local
main = toSource not?
-- Thanks to intensionality, we can inspect the structure of a given value -- Thanks to intensionality, we can inspect the structure of a given value
-- even if it's a function. This includes lambdas which are eliminated to -- even if it's a function. This includes lambdas which are eliminated to
-- Tree Calculus (TC) terms during evaluation. -- Tree Calculus (TC) terms during evaluation.
-- `triage` takes four arguments: the first three represent behaviors for each -- Triage takes four arguments: the first three represent behaviors for each
-- structural case in Tree Calculus (Leaf, Stem, and Fork). -- structural case in Tree Calculus (Leaf, Stem, and Fork).
-- The fourth argument is the value whose structure is inspected. By evaluating -- The fourth argument is the value whose structure is inspected. By evaluating
-- the Tree Calculus term, `triage` enables branching logic based on the term's -- the Tree Calculus term, `triage` enables branching logic based on the term's
-- shape, making it possible to perform structure-specific operations such as -- shape, making it possible to perform structure-specific operations such as
-- reconstructing the terms' source code representation. -- reconstructing the terms' source code representation.
-- triage = (\leaf stem fork : t (t leaf stem) fork) triage = (\a b c : t (t a b) c)
-- Base case of a single Leaf -- Base case of a single Leaf
sourceLeaf = t (head "t") sourceLeaf = t (head "t")
@ -38,13 +34,13 @@ sourceFork = (\convert : (\a b rest :
-- Wrapper around triage -- Wrapper around triage
toSource_ = y (\self arg : toSource_ = y (\self arg :
triage triage
sourceLeaf -- `triage` "a" case, Leaf sourceLeaf -- Triage `a` case, Leaf
(sourceStem self) -- `triage` "b" case, Stem (sourceStem self) -- Triage `b` case, Stem
(sourceFork self) -- `triage` "c" case, Fork (sourceFork self) -- Triage `c` case, Fork
arg) -- The term to be inspected arg) -- The term to be inspected
-- toSource takes a single TC term and returns a String -- toSource takes a single TC term and returns a String
toSource = \v : toSource_ v "" toSource = (\v : toSource_ v "")
exampleOne = toSource true -- OUT: "(t t)" exampleOne = toSource true -- OUT: "(t t)"
exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))" exampleTwo = toSource not -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"

View File

@ -32,12 +32,10 @@
defaultPackage = self.packages.${system}.default; defaultPackage = self.packages.${system}.default;
devShells.default = pkgs.mkShell { devShells.default = pkgs.mkShell {
buildInputs = with pkgs; [ buildInputs = with pkgs.haskellPackages; [
haskellPackages.cabal-install cabal-install
haskellPackages.ghc-events ghcid
haskellPackages.ghcid
customGHC customGHC
upx
]; ];
inputsFrom = builtins.attrValues self.packages.${system}; inputsFrom = builtins.attrValues self.packages.${system};
}; };

View File

@ -1,18 +1,24 @@
false = t false = t
_ = t _ = t
true = t t true = t t
id = \a : a k = t t
const = \a b : a i = t (t k) t
s = t (t (k t)) t
m = s i i
b = s (k s) k
c = s (s (k s) (s (k k) s)) (k k)
iC = (\a b c : s a (k c) b)
iD = b (b iC) iC
iE = b (b iD) iC
yi = (\i : b m (c b (i m)))
y = yi iC
yC = yi iD
yD = yi iE
id = (\a : a)
pair = t pair = t
if = \cond then else : t (t else (t t then)) t cond if = (\cond then else : t (t else (t t then)) t cond)
y = ((\mut wait fun : wait mut (\x : fun (wait mut x))) triage = (\a b c : t (t a b) c)
(\x : x x)
(\a0 a1 a2 : t (t a0) (t t a2) a1))
compose = \f g x : f (g x)
triage = \leaf stem fork : t (t leaf stem) fork
test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork") test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork")
matchBool = (\ot of : triage matchBool = (\ot of : triage
@ -21,32 +27,46 @@ matchBool = (\ot of : triage
(\_ _ : ot) (\_ _ : ot)
) )
matchList = (\oe oc : triage
oe
_
oc
)
matchPair = (\op : triage
_
_
op
)
not? = matchBool false true
and? = matchBool id (\_ : false)
emptyList? = matchList true (\_ _ : false)
head = matchList t (\head _ : head)
tail = matchList t (\_ tail : tail)
lconcat = y (\self : matchList
(\k : k)
(\h r k : pair h (self r k)))
lAnd = (triage lAnd = (triage
(\_ : false) (\_ : false)
(\_ x : x) (\_ x : x)
(\_ _ x : x)) (\_ _ x : x)
)
lOr = (triage lOr = (triage
(\x : x) (\x : x)
(\_ _ : true) (\_ _ : true)
(\_ _ _ : true)) (\_ _ _ : true)
)
matchPair = \a : triage _ _ a map_ = y (\self :
matchList
not? = matchBool false true (\_ : t)
and? = matchBool id (\_ : false) (\head tail f : pair (f head) (self tail f)))
map = (\f l : map_ l f)
or? = (\x z :
matchBool
(matchBool true true z)
(matchBool true false z)
x)
xor? = (\x z :
matchBool
(matchBool false true z)
(matchBool true false z)
x)
equal? = y (\self : triage equal? = y (\self : triage
(triage (triage
@ -64,11 +84,13 @@ equal? = y (\self : triage
(\_ : false) (\_ : false)
(\bx by : lAnd (self ax bx) (self ay by)))) (\bx by : lAnd (self ax bx) (self ay by))))
succ = y (\self : filter_ = y (\self : matchList
triage (\_ : t)
1 (\head tail f : matchBool (t head) i (f head) (self tail f)))
t filter = (\f l : filter_ l f)
(triage
(t (t t)) foldl_ = y (\self f l x : matchList (\acc : acc) (\head tail acc : self f tail (f acc head)) l x)
(\_ tail : t t (self tail)) foldl = (\f x l : foldl_ f l x)
t))
foldr_ = y (\self x f l : matchList x (\head tail : f (self x f tail) head) l)
foldr = (\f x l : foldr_ x f l)

View File

@ -1,68 +0,0 @@
!import "base.tri" !Local
matchList = \a b : triage a _ b
emptyList? = matchList true (\_ _ : false)
head = matchList t (\head _ : head)
tail = matchList t (\_ tail : tail)
append = y (\self : matchList
(\k : k)
(\h r k : pair h (self r k)))
lExist? = y (\self x : matchList
false
(\h z : or? (equal? x h) (self x z)))
map_ = y (\self :
matchList
(\_ : t)
(\head tail f : pair (f head) (self tail f)))
map = \f l : map_ l f
filter_ = y (\self : matchList
(\_ : t)
(\head tail f : matchBool (t head) id (f head) (self tail f)))
filter = \f l : filter_ l f
foldl_ = y (\self f l x : matchList (\acc : acc) (\head tail acc : self f tail (f acc head)) l x)
foldl = \f x l : foldl_ f l x
foldr_ = y (\self x f l : matchList x (\head tail : f (self x f tail) head) l)
foldr = \f x l : foldr_ x f l
length = y (\self : matchList
0
(\_ tail : succ (self tail)))
reverse = y (\self : matchList
t
(\head tail : append (self tail) (pair head t)))
snoc = y (\self x : matchList
(pair x t)
(\h z : pair h (self x z)))
count = y (\self x : matchList
0
(\h z : matchBool
(succ (self x z))
(self x z)
(equal? x h)))
last = y (\self : matchList
t
(\hd tl : matchBool
hd
(self tl)
(emptyList? tl)))
all? = y (\self pred : matchList
true
(\h z : and? (pred h) (self pred z)))
any? = y (\self pred : matchList
false
(\h z : or? (pred h) (self pred z)))
intersect = \xs ys : filter (\x : lExist? x ys) xs

View File

@ -1,36 +0,0 @@
!import "list.tri" !Local
match_ = y (\self value patterns :
triage
t
(\_ : t)
(\pattern rest :
triage
t
(\_ : t)
(\test result :
if (test value)
(result value)
(self value rest))
pattern)
patterns)
match = (\value patterns :
match_ value (map (\sublist :
pair (head sublist) (head (tail sublist)))
patterns))
otherwise = const (t t)
matchExample = (\x : match x
[[(equal? 1) (\_ : "one")]
[(equal? 2) (\_ : "two")]
[(equal? 3) (\_ : "three")]
[(equal? 4) (\_ : "four")]
[(equal? 5) (\_ : "five")]
[(equal? 6) (\_ : "six")]
[(equal? 7) (\_ : "seven")]
[(equal? 8) (\_ : "eight")]
[(equal? 9) (\_ : "nine")]
[(equal? 10) (\_ : "ten")]
[ otherwise (\_ : "I ran out of fingers!")]])

View File

@ -3,42 +3,32 @@ module Eval where
import Parser import Parser
import Research import Research
import Data.List (partition, (\\))
import Data.Map (Map) import Data.Map (Map)
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Set as Set import qualified Data.Set as Set
evalSingle :: Env -> TricuAST -> Env evalSingle :: Env -> TricuAST -> Env
evalSingle env term evalSingle env term
| SDef name [] body <- term | SFunc name [] body <- term =
= case Map.lookup name env of
Just existingValue
| existingValue == evalAST env body -> env
| otherwise -> errorWithoutStackTrace $
"Unable to rebind immutable identifier: " ++ name
Nothing ->
let res = evalAST env body let res = evalAST env body
in Map.insert "!result" res (Map.insert name res env) in Map.insert "__result" res (Map.insert name res env)
| SApp func arg <- term | SApp func arg <- term =
= let res = apply (evalAST env func) (evalAST env arg) let res = apply (evalAST env func) (evalAST env arg)
in Map.insert "!result" res env in Map.insert "__result" res env
| SVar name <- term | SVar name <- term =
= case Map.lookup name env of case Map.lookup name env of
Just v -> Map.insert "!result" v env Just v -> Map.insert "__result" v env
Nothing -> Nothing -> errorWithoutStackTrace $ "Variable " ++ name ++ " not defined"
errorWithoutStackTrace $ "Variable `" ++ name ++ "` not defined\n\ | otherwise =
\This error should never occur here. Please report this as an issue." Map.insert "__result" (evalAST env term) env
| otherwise
= Map.insert "!result" (evalAST env term) env
evalTricu :: Env -> [TricuAST] -> Env evalTricu :: Env -> [TricuAST] -> Env
evalTricu env x = go env (reorderDefs env x) evalTricu env [] = env
where evalTricu env [x] =
go env [] = env
go env [x] =
let updatedEnv = evalSingle env x let updatedEnv = evalSingle env x
in Map.insert "!result" (result updatedEnv) updatedEnv in Map.insert "__result" (result updatedEnv) updatedEnv
go env (x:xs) = evalTricu env (x:xs) =
evalTricu (evalSingle env x) xs evalTricu (evalSingle env x) xs
evalAST :: Env -> TricuAST -> T evalAST :: Env -> TricuAST -> T
@ -59,25 +49,11 @@ evalAST env term
(errorWithoutStackTrace $ "Variable " ++ name ++ " not defined") (errorWithoutStackTrace $ "Variable " ++ name ++ " not defined")
name env name env
-- https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf
-- Chapter 4: Lambda-Abstraction
elimLambda :: TricuAST -> TricuAST elimLambda :: TricuAST -> TricuAST
elimLambda = go elimLambda = go
where where
-- η-reduction
go (SLambda [v] (SApp f (SVar x)))
| v == x && not (isFree v f) = elimLambda f
-- Triage optimization
go (SLambda [a] (SLambda [b] (SLambda [c] body)))
| body == triageBody = _TRIAGE
where
triageBody =
SApp (SApp TLeaf (SApp (SApp TLeaf (SVar a)) (SVar b))) (SVar c)
-- Composition optimization
go (SLambda [f] (SLambda [g] (SLambda [x] body)))
| body == SApp (SVar f) (SApp (SVar g) (SVar x)) = _B
-- General elimination
go (SLambda [v] (SList xs))
= elimLambda (SLambda [v] (foldr wrapTLeaf TLeaf xs))
where wrapTLeaf m r = SApp (SApp TLeaf m) r
go (SLambda (v:vs) body) go (SLambda (v:vs) body)
| null vs = toSKI v (elimLambda body) | null vs = toSKI v (elimLambda body)
| otherwise = elimLambda (SLambda [v] (SLambda vs body)) | otherwise = elimLambda (SLambda [v] (SLambda vs body))
@ -92,106 +68,25 @@ elimLambda = go
| otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u) | otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u)
toSKI x t toSKI x t
| not (isFree x t) = SApp _K t | not (isFree x t) = SApp _K t
| otherwise = errorWithoutStackTrace "Unhandled toSKI conversion" | otherwise = SApp (SApp _S (toSKI x t)) TLeaf
_S = parseSingle "t (t (t t t)) t" _S = parseSingle "t (t (t t t)) t"
_K = parseSingle "t t" _K = parseSingle "t t"
_I = parseSingle "t (t (t t)) t" _I = parseSingle "t (t (t t)) t"
_B = parseSingle "t (t (t t (t (t (t t t)) t))) (t t)"
_TRIAGE = parseSingle "t (t (t t (t (t (t t t))))) t"
isFree :: String -> TricuAST -> Bool isFree x = Set.member x . freeVars
isFree x = Set.member x . freeVars freeVars (SVar v ) = Set.singleton v
freeVars (SInt _ ) = Set.empty
freeVars :: TricuAST -> Set.Set String freeVars (SStr _ ) = Set.empty
freeVars (SVar v ) = Set.singleton v freeVars (SList s ) = foldMap freeVars s
freeVars (SInt _ ) = Set.empty freeVars (SApp f a ) = freeVars f <> freeVars a
freeVars (SStr _ ) = Set.empty freeVars (TLeaf ) = Set.empty
freeVars (SList s ) = foldMap freeVars s freeVars (SFunc _ _ b) = freeVars b
freeVars (SApp f a ) = freeVars f <> freeVars a freeVars (TStem t ) = freeVars t
freeVars TLeaf = Set.empty freeVars (TFork l r ) = freeVars l <> freeVars r
freeVars (SDef _ _ b) = freeVars b freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v
freeVars (TStem t ) = freeVars t
freeVars (TFork l r ) = freeVars l <> freeVars r
freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v
freeVars _ = Set.empty
reorderDefs :: Env -> [TricuAST] -> [TricuAST]
reorderDefs env defs
| not (null missingDeps) =
errorWithoutStackTrace $
"Missing dependencies detected: " ++ show missingDeps
| otherwise = orderedDefs ++ others
where
(defsOnly, others) = partition isDef defs
defNames = [ name | SDef name _ _ <- defsOnly ]
defsWithFreeVars = [(def, freeVars body) | def@(SDef _ _ body) <- defsOnly]
graph = buildDepGraph defsOnly
sortedDefs = sortDeps graph
defMap = Map.fromList [(name, def) | def@(SDef name _ _) <- defsOnly]
orderedDefs = map (\name -> defMap Map.! name) sortedDefs
freeVarsDefs = foldMap snd defsWithFreeVars
freeVarsOthers = foldMap freeVars others
allFreeVars = freeVarsDefs <> freeVarsOthers
validNames = Set.fromList defNames `Set.union` Set.fromList (Map.keys env)
missingDeps = Set.toList (allFreeVars `Set.difference` validNames)
isDef (SDef _ _ _) = True
isDef _ = False
buildDepGraph :: [TricuAST] -> Map.Map String (Set.Set String)
buildDepGraph topDefs
| not (null conflictingDefs) =
errorWithoutStackTrace $
"Conflicting definitions detected: " ++ show conflictingDefs
| otherwise =
Map.fromList
[ (name, depends topDefs (SDef name [] body))
| SDef name _ body <- topDefs]
where
defsMap = Map.fromListWith (++)
[(name, [(name, body)]) | SDef name _ body <- topDefs]
conflictingDefs =
[ name
| (name, defs) <- Map.toList defsMap
, let bodies = map snd defs
, not $ all (== head bodies) (tail bodies)
]
sortDeps :: Map.Map String (Set.Set String) -> [String]
sortDeps graph = go [] Set.empty (Map.keys graph)
where
go sorted sortedSet [] = sorted
go sorted sortedSet remaining =
let ready = [ name | name <- remaining
, let deps = Map.findWithDefault Set.empty name graph
, Set.isSubsetOf deps sortedSet ]
notReady = remaining \\ ready
in if null ready
then errorWithoutStackTrace
"ERROR: Cyclic dependency detected and prohibited.\n\
\RESOLVE: Use nested lambdas."
else go (sorted ++ ready)
(Set.union sortedSet (Set.fromList ready))
notReady
depends :: [TricuAST] -> TricuAST -> Set.Set String
depends topDefs (SDef _ _ body) =
Set.intersection
(Set.fromList [n | SDef n _ _ <- topDefs])
(freeVars body)
depends _ _ = Set.empty
result :: Env -> T result :: Env -> T
result r = case Map.lookup "!result" r of result r = case Map.lookup "__result" r of
Just a -> a Just a -> a
Nothing -> errorWithoutStackTrace "No !result field found in provided env" Nothing -> errorWithoutStackTrace "No __result field found in provided environment"
mainResult :: Env -> T
mainResult r = case Map.lookup "main" r of
Just a -> a
Nothing -> errorWithoutStackTrace "No valid definition for `main` found."

View File

@ -1,158 +1,30 @@
module FileEval where module FileEval where
import Eval import Eval
import Lexer
import Parser import Parser
import Research import Research
import Data.List (partition)
import Data.Maybe (mapMaybe)
import Control.Monad (foldM)
import System.IO import System.IO
import System.FilePath (takeDirectory, normalise, (</>))
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Set as Set
extractMain :: Env -> Either String T
extractMain env =
case Map.lookup "main" env of
Just result -> Right result
Nothing -> Left "No `main` function detected"
processImports :: Set.Set FilePath -> FilePath -> FilePath -> [TricuAST]
-> Either String ([TricuAST], [(FilePath, String, FilePath)])
processImports seen base currentPath asts =
let (imports, nonImports) = partition isImp asts
importPaths = mapMaybe getImportInfo imports
in if currentPath `Set.member` seen
then Left $ "Encountered cyclic import: " ++ currentPath
else Right (nonImports, importPaths)
where
isImp (SImport _ _) = True
isImp _ = False
getImportInfo (SImport p n) = Just (p, n, makeRelativeTo currentPath p)
getImportInfo _ = Nothing
evaluateFileResult :: FilePath -> IO T evaluateFileResult :: FilePath -> IO T
evaluateFileResult filePath = do evaluateFileResult filePath = do
contents <- readFile filePath contents <- readFile filePath
let tokens = lexTricu contents let asts = parseTricu contents
case parseProgram tokens of let finalEnv = evalTricu Map.empty asts
Left err -> errorWithoutStackTrace (handleParseError err) case Map.lookup "__result" finalEnv of
Right ast -> do Just finalResult -> return finalResult
processedAst <- preprocessFile filePath Nothing -> errorWithoutStackTrace "No expressions to evaluate found"
let finalEnv = evalTricu Map.empty processedAst
case extractMain finalEnv of
Right result -> return result
Left err -> errorWithoutStackTrace err
evaluateFile :: FilePath -> IO Env evaluateFile :: FilePath -> IO Env
evaluateFile filePath = do evaluateFile filePath = do
contents <- readFile filePath contents <- readFile filePath
let tokens = lexTricu contents let asts = parseTricu contents
case parseProgram tokens of pure $ evalTricu Map.empty asts
Left err -> errorWithoutStackTrace (handleParseError err)
Right ast -> do
ast <- preprocessFile filePath
pure $ evalTricu Map.empty ast
evaluateFileWithContext :: Env -> FilePath -> IO Env evaluateFileWithContext :: Env -> FilePath -> IO Env
evaluateFileWithContext env filePath = do evaluateFileWithContext env filePath = do
contents <- readFile filePath contents <- readFile filePath
let tokens = lexTricu contents let asts = parseTricu contents
case parseProgram tokens of pure $ evalTricu env asts
Left err -> errorWithoutStackTrace (handleParseError err)
Right ast -> do
ast <- preprocessFile filePath
pure $ evalTricu env ast
preprocessFile :: FilePath -> IO [TricuAST]
preprocessFile p = preprocessFile' Set.empty p p
preprocessFile' :: Set.Set FilePath -> FilePath -> FilePath -> IO [TricuAST]
preprocessFile' seen base currentPath = do
contents <- readFile currentPath
let tokens = lexTricu contents
case parseProgram tokens of
Left err -> errorWithoutStackTrace (handleParseError err)
Right ast ->
case processImports seen base currentPath ast of
Left err -> errorWithoutStackTrace err
Right (nonImports, importPaths) -> do
let seen' = Set.insert currentPath seen
imported <- concat <$> mapM (processImportPath seen' base) importPaths
pure $ imported ++ nonImports
where
processImportPath seen base (path, name, importPath) = do
ast <- preprocessFile' seen base importPath
pure $ map (nsDefinition (if name == "!Local" then "" else name))
$ filter (not . isImp) ast
isImp (SImport _ _) = True
isImp _ = False
makeRelativeTo :: FilePath -> FilePath -> FilePath
makeRelativeTo f i =
let d = takeDirectory f
in normalise $ d </> i
nsDefinitions :: String -> [TricuAST] -> [TricuAST]
nsDefinitions moduleName = map (nsDefinition moduleName)
nsDefinition :: String -> TricuAST -> TricuAST
nsDefinition "" def = def
nsDefinition moduleName (SDef name args body)
| isPrefixed name = SDef name args (nsBody moduleName body)
| otherwise = SDef (nsVariable moduleName name)
args (nsBody moduleName body)
nsDefinition moduleName other =
nsBody moduleName other
nsBody :: String -> TricuAST -> TricuAST
nsBody moduleName (SVar name)
| isPrefixed name = SVar name
| otherwise = SVar (nsVariable moduleName name)
nsBody moduleName (SApp func arg) =
SApp (nsBody moduleName func) (nsBody moduleName arg)
nsBody moduleName (SLambda args body) =
SLambda args (nsBodyScoped moduleName args body)
nsBody moduleName (SList items) =
SList (map (nsBody moduleName) items)
nsBody moduleName (TFork left right) =
TFork (nsBody moduleName left) (nsBody moduleName right)
nsBody moduleName (TStem subtree) =
TStem (nsBody moduleName subtree)
nsBody moduleName (SDef name args body)
| isPrefixed name = SDef name args (nsBody moduleName body)
| otherwise = SDef (nsVariable moduleName name)
args (nsBody moduleName body)
nsBody _ other = other
nsBodyScoped :: String -> [String] -> TricuAST -> TricuAST
nsBodyScoped moduleName args body = case body of
SVar name ->
if name `elem` args
then SVar name
else nsBody moduleName (SVar name)
SApp func arg ->
SApp (nsBodyScoped moduleName args func) (nsBodyScoped moduleName args arg)
SLambda innerArgs innerBody ->
SLambda innerArgs (nsBodyScoped moduleName (args ++ innerArgs) innerBody)
SList items ->
SList (map (nsBodyScoped moduleName args) items)
TFork left right ->
TFork (nsBodyScoped moduleName args left)
(nsBodyScoped moduleName args right)
TStem subtree ->
TStem (nsBodyScoped moduleName args subtree)
SDef name innerArgs innerBody ->
SDef (nsVariable moduleName name) innerArgs
(nsBodyScoped moduleName (args ++ innerArgs) innerBody)
other -> other
isPrefixed :: String -> Bool
isPrefixed name = '.' `elem` name
nsVariable :: String -> String -> String
nsVariable "" name = name
nsVariable moduleName name = moduleName ++ "." ++ name

View File

@ -3,7 +3,6 @@ module Lexer where
import Research import Research
import Control.Monad (void) import Control.Monad (void)
import Data.Functor (($>))
import Data.Void import Data.Void
import Text.Megaparsec import Text.Megaparsec
import Text.Megaparsec.Char hiding (space) import Text.Megaparsec.Char hiding (space)
@ -13,28 +12,76 @@ import qualified Data.Set as Set
type Lexer = Parsec Void String type Lexer = Parsec Void String
keywordT :: Lexer LToken
keywordT = string "t" *> notFollowedBy alphaNumChar *> pure LKeywordT
identifier :: Lexer LToken
identifier = do
first <- letterChar <|> char '_'
rest <- many $ letterChar
<|> digitChar
<|> char '_' <|> char '-' <|> char '?' <|> char '!'
<|> char '$' <|> char '#' <|> char '@' <|> char '%'
let name = first : rest
if (name == "t" || name == "__result")
then fail "Keywords (`t`, `__result`) cannot be used as an identifier"
else return (LIdentifier name)
integerLiteral :: Lexer LToken
integerLiteral = do
num <- some digitChar
return (LIntegerLiteral (read num))
stringLiteral :: Lexer LToken
stringLiteral = do
char '"'
content <- many (noneOf ['"'])
char '"' --"
return (LStringLiteral content)
assign :: Lexer LToken
assign = char '=' *> pure LAssign
colon :: Lexer LToken
colon = char ':' *> pure LColon
backslash :: Lexer LToken
backslash = char '\\' *> pure LBackslash
openParen :: Lexer LToken
openParen = char '(' *> pure LOpenParen
closeParen :: Lexer LToken
closeParen = char ')' *> pure LCloseParen
openBracket :: Lexer LToken
openBracket = char '[' *> pure LOpenBracket
closeBracket :: Lexer LToken
closeBracket = char ']' *> pure LCloseBracket
lnewline :: Lexer LToken
lnewline = char '\n' *> pure LNewline
sc :: Lexer ()
sc = space
(void $ takeWhile1P (Just "space") (\c -> c == ' ' || c == '\t'))
(skipLineComment "--")
(skipBlockComment "|-" "-|")
tricuLexer :: Lexer [LToken] tricuLexer :: Lexer [LToken]
tricuLexer = do tricuLexer = do
sc sc
header <- many $ do
tok <- choice
[ try lImport
, lnewline
]
sc
pure tok
tokens <- many $ do tokens <- many $ do
tok <- choice tricuLexer' tok <- choice tricuLexer'
sc sc
pure tok pure tok
sc sc
eof eof
pure (header ++ tokens) pure tokens
where where
tricuLexer' = tricuLexer' =
[ try lnewline [ try lnewline
, try namespace
, try dot
, try identifier , try identifier
, try keywordT , try keywordT
, try integerLiteral , try integerLiteral
@ -52,81 +99,3 @@ lexTricu :: String -> [LToken]
lexTricu input = case runParser tricuLexer "" input of lexTricu input = case runParser tricuLexer "" input of
Left err -> errorWithoutStackTrace $ "Lexical error:\n" ++ errorBundlePretty err Left err -> errorWithoutStackTrace $ "Lexical error:\n" ++ errorBundlePretty err
Right tokens -> tokens Right tokens -> tokens
keywordT :: Lexer LToken
keywordT = string "t" *> notFollowedBy alphaNumChar $> LKeywordT
identifier :: Lexer LToken
identifier = do
first <- lowerChar <|> char '_'
rest <- many $ letterChar
<|> digitChar <|> char '_' <|> char '-' <|> char '?'
<|> char '$' <|> char '#' <|> char '@' <|> char '%'
let name = first : rest
if name == "t" || name == "!result"
then fail "Keywords (`t`, `!result`) cannot be used as an identifier"
else return (LIdentifier name)
namespace :: Lexer LToken
namespace = do
name <- try (string "!Local") <|> do
first <- upperChar
rest <- many (letterChar <|> digitChar)
return (first:rest)
return (LNamespace name)
dot :: Lexer LToken
dot = char '.' $> LDot
lImport :: Lexer LToken
lImport = do
_ <- string "!import"
space1
LStringLiteral path <- stringLiteral
space1
LNamespace name <- namespace
return (LImport path name)
assign :: Lexer LToken
assign = char '=' $> LAssign
colon :: Lexer LToken
colon = char ':' $> LColon
backslash :: Lexer LToken
backslash = char '\\' $> LBackslash
openParen :: Lexer LToken
openParen = char '(' $> LOpenParen
closeParen :: Lexer LToken
closeParen = char ')' $> LCloseParen
openBracket :: Lexer LToken
openBracket = char '[' $> LOpenBracket
closeBracket :: Lexer LToken
closeBracket = char ']' $> LCloseBracket
lnewline :: Lexer LToken
lnewline = char '\n' $> LNewline
sc :: Lexer ()
sc = space
(void $ takeWhile1P (Just "space") (\c -> c == ' ' || c == '\t'))
(skipLineComment "--")
(skipBlockComment "|-" "-|")
integerLiteral :: Lexer LToken
integerLiteral = do
num <- some digitChar
return (LIntegerLiteral (read num))
stringLiteral :: Lexer LToken
stringLiteral = do
char '"'
content <- many (noneOf ['"'])
char '"' --"
return (LStringLiteral content)

View File

@ -1,6 +1,6 @@
module Main where module Main where
import Eval (evalTricu, mainResult, result) import Eval (evalTricu, result)
import FileEval import FileEval
import Parser (parseTricu) import Parser (parseTricu)
import REPL import REPL
@ -8,9 +8,7 @@ import Research
import Control.Monad (foldM) import Control.Monad (foldM)
import Control.Monad.IO.Class (liftIO) import Control.Monad.IO.Class (liftIO)
import Data.Version (showVersion)
import Text.Megaparsec (runParser) import Text.Megaparsec (runParser)
import Paths_tricu (version)
import System.Console.CmdArgs import System.Console.CmdArgs
import qualified Data.Map as Map import qualified Data.Map as Map
@ -18,7 +16,7 @@ import qualified Data.Map as Map
data TricuArgs data TricuArgs
= Repl = Repl
| Evaluate { file :: [FilePath], form :: EvaluatedForm } | Evaluate { file :: [FilePath], form :: EvaluatedForm }
| TDecode { file :: [FilePath] } | Decode { file :: [FilePath] }
deriving (Show, Data, Typeable) deriving (Show, Data, Typeable)
replMode :: TricuArgs replMode :: TricuArgs
@ -33,7 +31,7 @@ evaluateMode = Evaluate
\ Defaults to stdin." \ Defaults to stdin."
&= name "f" &= typ "FILE" &= name "f" &= typ "FILE"
, form = TreeCalculus &= typ "FORM" , form = TreeCalculus &= typ "FORM"
&= help "Optional output form: (tree|fsl|ast|ternary|ascii|decode).\n \ &= help "Optional output form: (tree|fsl|ast|ternary|ascii).\n \
\ Defaults to tricu-compatible `t` tree form." \ Defaults to tricu-compatible `t` tree form."
&= name "t" &= name "t"
} }
@ -42,7 +40,7 @@ evaluateMode = Evaluate
&= name "eval" &= name "eval"
decodeMode :: TricuArgs decodeMode :: TricuArgs
decodeMode = TDecode decodeMode = Decode
{ file = def { file = def
&= help "Optional input file path to attempt decoding.\n \ &= help "Optional input file path to attempt decoding.\n \
\ Defaults to stdin." \ Defaults to stdin."
@ -54,17 +52,16 @@ decodeMode = TDecode
main :: IO () main :: IO ()
main = do main = do
let versionStr = "tricu Evaluator and REPL " ++ showVersion version
args <- cmdArgs $ modes [replMode, evaluateMode, decodeMode] args <- cmdArgs $ modes [replMode, evaluateMode, decodeMode]
&= help "tricu: Exploring Tree Calculus" &= help "tricu: Exploring Tree Calculus"
&= program "tricu" &= program "tricu"
&= summary versionStr &= summary "tricu Evaluator and REPL"
&= versionArg [explicit, name "version", summary versionStr]
case args of case args of
Repl -> do Repl -> do
putStrLn "Welcome to the tricu REPL" putStrLn "Welcome to the tricu REPL"
putStrLn "You can exit with `CTRL+D` or the `!exit` command.`" putStrLn "You can exit with `CTRL+D` or the `:_exit` command.`"
repl Map.empty library <- liftIO $ evaluateFile "./lib/base.tri"
repl $ Map.delete "__result" library
Evaluate { file = filePaths, form = form } -> do Evaluate { file = filePaths, form = form } -> do
result <- case filePaths of result <- case filePaths of
[] -> do [] -> do
@ -73,14 +70,15 @@ main = do
(filePath:restFilePaths) -> do (filePath:restFilePaths) -> do
initialEnv <- evaluateFile filePath initialEnv <- evaluateFile filePath
finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths
pure $ mainResult finalEnv pure $ result finalEnv
let fRes = formatResult form result let fRes = formatResult form result
putStr fRes putStr fRes
TDecode { file = filePaths } -> do Decode { file = filePaths } -> do
value <- case filePaths of value <- case filePaths of
[] -> getContents [] -> getContents
(filePath:_) -> readFile filePath (filePath:_) -> readFile filePath
putStrLn $ decodeResult $ result $ evalTricu Map.empty $ parseTricu value library <- liftIO $ evaluateFile "./lib/base.tri"
putStrLn $ decodeResult $ result $ evalTricu library $ parseTricu value
runTricu :: String -> T runTricu :: String -> T
runTricu input = runTricu input =

View File

@ -74,22 +74,9 @@ parseSingle input =
parseProgramM :: ParserM [TricuAST] parseProgramM :: ParserM [TricuAST]
parseProgramM = do parseProgramM = do
skipMany topLevelNewline skipMany topLevelNewline
importNodes <- many (do
node <- parseImportM
skipMany topLevelNewline
return node)
skipMany topLevelNewline
exprs <- sepEndBy parseOneExpression (some topLevelNewline) exprs <- sepEndBy parseOneExpression (some topLevelNewline)
skipMany topLevelNewline skipMany topLevelNewline
return (importNodes ++ exprs) return exprs
parseImportM :: ParserM TricuAST
parseImportM = do
LImport filePath moduleName <- satisfyM isImport
pure (SImport filePath moduleName)
where
isImport (LImport _ _) = True
isImport _ = False
parseOneExpression :: ParserM TricuAST parseOneExpression :: ParserM TricuAST
parseOneExpression = scnParserM *> parseExpressionM parseOneExpression = scnParserM *> parseExpressionM
@ -98,10 +85,13 @@ scnParserM :: ParserM ()
scnParserM = skipMany $ do scnParserM = skipMany $ do
t <- lookAhead anySingle t <- lookAhead anySingle
st <- get st <- get
if | (parenDepth st > 0 || bracketDepth st > 0) && (t == LNewline) -> if | (parenDepth st > 0 || bracketDepth st > 0) && case t of
void $ satisfyM (== LNewline) LNewline -> True
| otherwise -> _ -> False -> void $ satisfyM $ \case
fail "In nested context or no space token" <|> empty LNewline -> True
_ -> False
| otherwise -> fail "In nested context or no space token" <|> empty
eofM :: ParserM () eofM :: ParserM ()
eofM = lift eof eofM = lift eof
@ -119,23 +109,32 @@ parseExpressionM = choice
parseFunctionM :: ParserM TricuAST parseFunctionM :: ParserM TricuAST
parseFunctionM = do parseFunctionM = do
let ident = (\case LIdentifier _ -> True; _ -> False) LIdentifier name <- satisfyM $ \case
LIdentifier name <- satisfyM ident LIdentifier _ -> True
args <- many $ satisfyM ident _ -> False
args <- many $ satisfyM $ \case
LIdentifier _ -> True
_ -> False
_ <- satisfyM (== LAssign) _ <- satisfyM (== LAssign)
scnParserM scnParserM
body <- parseExpressionM body <- parseExpressionM
pure (SDef name (map getIdentifier args) body) pure (SFunc name (map getIdentifier args) body)
parseLambdaM :: ParserM TricuAST parseLambdaM :: ParserM TricuAST
parseLambdaM = do parseLambdaM =
let ident = (\case LIdentifier _ -> True; _ -> False) between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) $ do
_ <- satisfyM (== LBackslash) _ <- satisfyM (== LBackslash)
params <- some (satisfyM ident) param <- satisfyM $ \case
LIdentifier _ -> True
_ -> False
rest <- many $ satisfyM $ \case
LIdentifier _ -> True
_ -> False
_ <- satisfyM (== LColon) _ <- satisfyM (== LColon)
scnParserM scnParserM
body <- parseLambdaExpressionM body <- parseLambdaExpressionM
pure $ foldr (\param acc -> SLambda [getIdentifier param] acc) body params let nested = foldr (\v acc -> SLambda [getIdentifier v] acc) body rest
pure (SLambda [getIdentifier param] nested)
parseLambdaExpressionM :: ParserM TricuAST parseLambdaExpressionM :: ParserM TricuAST
parseLambdaExpressionM = choice parseLambdaExpressionM = choice
@ -181,8 +180,9 @@ parseAtomicBaseM = choice
parseTreeLeafM :: ParserM TricuAST parseTreeLeafM :: ParserM TricuAST
parseTreeLeafM = do parseTreeLeafM = do
let keyword = (\case LKeywordT -> True; _ -> False) _ <- satisfyM $ \case
_ <- satisfyM keyword LKeywordT -> True
_ -> False
notFollowedBy $ lift $ satisfy (== LAssign) notFollowedBy $ lift $ satisfy (== LAssign)
pure TLeaf pure TLeaf
@ -248,45 +248,37 @@ parseGroupedItemM = do
parseSingleItemM :: ParserM TricuAST parseSingleItemM :: ParserM TricuAST
parseSingleItemM = do parseSingleItemM = do
token <- satisfyM (\case LIdentifier _ -> True; LKeywordT -> True; _ -> False) token <- satisfyM $ \case
if | LIdentifier name <- token -> pure (SVar name) LIdentifier _ -> True
| token == LKeywordT -> pure TLeaf LKeywordT -> True
| otherwise -> fail "Unexpected token in list item" _ -> False
case token of
LIdentifier name -> pure (SVar name)
LKeywordT -> pure TLeaf
_ -> fail "Unexpected token in list item"
parseVarM :: ParserM TricuAST parseVarM :: ParserM TricuAST
parseVarM = do parseVarM = do
token <- satisfyM (\case LIdentifier name <- satisfyM $ \case
LNamespace _ -> True
LIdentifier _ -> True LIdentifier _ -> True
_ -> False) _ -> False
case token of if name == "t" || name == "__result"
LNamespace ns -> do then fail ("Reserved keyword: " ++ name ++ " cannot be assigned.")
_ <- satisfyM (== LDot) else pure (SVar name)
LIdentifier name <- satisfyM (\case LIdentifier _ -> True; _ -> False)
pure $ SVar (ns ++ "." ++ name)
LIdentifier name
| name == "t" || name == "!result" ->
fail ("Reserved keyword: " ++ name ++ " cannot be assigned.")
| otherwise -> pure (SVar name)
_ -> fail "Unexpected token while parsing variable"
parseIntLiteralM :: ParserM TricuAST parseIntLiteralM :: ParserM TricuAST
parseIntLiteralM = do parseIntLiteralM = do
let intL = (\case LIntegerLiteral _ -> True; _ -> False) LIntegerLiteral value <- satisfyM $ \case
token <- satisfyM intL LIntegerLiteral _ -> True
if | LIntegerLiteral value <- token -> _ -> False
pure (SInt value) pure (SInt value)
| otherwise ->
fail "Unexpected token while parsing integer literal"
parseStrLiteralM :: ParserM TricuAST parseStrLiteralM :: ParserM TricuAST
parseStrLiteralM = do parseStrLiteralM = do
let strL = (\case LStringLiteral _ -> True; _ -> False) LStringLiteral value <- satisfyM $ \case
token <- satisfyM strL LStringLiteral _ -> True
if | LStringLiteral value <- token -> _ -> False
pure (SStr value) pure (SStr value)
| otherwise ->
fail "Unexpected token while parsing string literal"
getIdentifier :: LToken -> String getIdentifier :: LToken -> String
getIdentifier (LIdentifier name) = name getIdentifier (LIdentifier name) = name

View File

@ -6,154 +6,50 @@ import Lexer
import Parser import Parser
import Research import Research
import Control.Exception (IOException, SomeException, catch import Control.Exception (SomeException, catch)
, displayException)
import Control.Monad (forM_)
import Control.Monad.Catch (handle, MonadCatch)
import Control.Monad.IO.Class (liftIO) import Control.Monad.IO.Class (liftIO)
import Control.Monad.Trans.Class (lift) import Data.Char (isSpace)
import Control.Monad.Trans.Maybe (MaybeT(..), runMaybeT) import Data.List (dropWhile, dropWhileEnd, intercalate)
import Data.Char (isSpace, isUpper)
import Data.List (dropWhile, dropWhileEnd, isPrefixOf)
import Data.Version (showVersion)
import Paths_tricu (version)
import System.Console.Haskeline import System.Console.Haskeline
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Text as T
import qualified Data.Text.IO as T
repl :: Env -> IO () repl :: Env -> IO ()
repl env = runInputT settings (withInterrupt (loop env Decode)) repl env = runInputT defaultSettings (loop env)
where where
settings :: Settings IO loop :: Env -> InputT IO ()
settings = Settings loop env = do
{ complete = completeWord Nothing " \t" completeCommands
, historyFile = Just "~/.local/state/tricu/history"
, autoAddHistory = True
}
completeCommands :: String -> IO [Completion]
completeCommands str = return $ map simpleCompletion $
filter (str `isPrefixOf`) commands
where
commands = [ "!exit"
, "!output"
, "!definitions"
, "!import"
, "!clear"
, "!save"
, "!reset"
, "!version"
]
loop :: Env -> EvaluatedForm -> InputT IO ()
loop env form = handle (interruptHandler env form) $ do
minput <- getInputLine "tricu < " minput <- getInputLine "tricu < "
case minput of if
Nothing -> outputStrLn "Exiting tricu" | Nothing <- minput -> outputStrLn "Exiting tricu"
Just s | Just s <- minput, strip s == "!exit" -> outputStrLn "Exiting tricu"
| strip s == "" -> loop env form | Just s <- minput, strip s == "" -> do
| strip s == "!exit" -> outputStrLn "Exiting tricu" outputStrLn ""
| strip s == "!clear" -> do loop env
liftIO $ putStr "\ESC[2J\ESC[H" | Just s <- minput, strip s == "!load" -> do
loop env form path <- getInputLine "File path to load < "
| strip s == "!reset" -> do if
outputStrLn "Environment reset to initial state" | Nothing <- path -> do
loop Map.empty form outputStrLn "No input received; stopping import."
| strip s == "!version" -> do loop env
outputStrLn $ "tricu version " ++ showVersion version | Just p <- path -> do
loop env form loadedEnv <- liftIO $ evaluateFileWithContext env (strip p) `catch` \e -> errorHandler env e
| "!save" `isPrefixOf` strip s -> handleSave env form loop $ Map.delete "__result" (Map.union loadedEnv env)
| strip s == "!output" -> handleOutput env form | Just s <- minput -> do
| strip s == "!definitions" -> do if
let defs = Map.keys $ Map.delete "!result" env | take 2 s == "--" -> loop env
if null defs
then outputStrLn "No definitions discovered."
else do
outputStrLn "Available definitions:"
mapM_ outputStrLn defs
loop env form
| "!import" `isPrefixOf` strip s -> handleImport env form
| take 2 s == "--" -> loop env form
| otherwise -> do | otherwise -> do
newEnv <- liftIO $ processInput env s form `catch` errorHandler env newEnv <- liftIO $ processInput env s `catch` errorHandler env
loop newEnv form loop newEnv
handleOutput :: Env -> EvaluatedForm -> InputT IO () processInput :: Env -> String -> IO Env
handleOutput env currentForm = do processInput env input = do
let formats = [Decode, TreeCalculus, FSL, AST, Ternary, Ascii]
outputStrLn "Available output formats:"
mapM_ (\(i, f) -> outputStrLn $ show i ++ ". " ++ show f)
(zip [1..] formats)
result <- runMaybeT $ do
input <- MaybeT $ getInputLine "Select output format (1-6) < "
case reads input of
[(n, "")] | n >= 1 && n <= 6 ->
return $ formats !! (n-1)
_ -> MaybeT $ return Nothing
case result of
Nothing -> do
outputStrLn "Invalid selection. Keeping current output format."
loop env currentForm
Just newForm -> do
outputStrLn $ "Output format changed to: " ++ show newForm
loop env newForm
handleImport :: Env -> EvaluatedForm -> InputT IO ()
handleImport env form = do
res <- runMaybeT $ do
let fset = setComplete completeFilename defaultSettings
path <- MaybeT $ runInputT fset $
getInputLineWithInitial "File path to load < " ("", "")
text <- MaybeT $ liftIO $ handle (\e -> do
putStrLn $ "Error reading file: " ++ displayException (e :: IOException)
return Nothing
) $ Just <$> readFile (strip path)
case parseProgram (lexTricu text) of
Left err -> do
lift $ outputStrLn $ "Parse error: " ++ handleParseError err
MaybeT $ return Nothing
Right ast -> do
ns <- MaybeT $ runInputT defaultSettings $
getInputLineWithInitial "Namespace (or !Local for no namespace) < " ("", "")
let name = strip ns
if (name /= "!Local" && (null name || not (isUpper (head name)))) then do
lift $ outputStrLn "Namespace must start with an uppercase letter"
MaybeT $ return Nothing
else do
prog <- liftIO $ preprocessFile (strip path)
let code = case name of
"!Local" -> prog
_ -> nsDefinitions name prog
env' = evalTricu env code
return env'
case res of
Nothing -> do
outputStrLn "Import cancelled"
loop env form
Just env' ->
loop (Map.delete "!result" env') form
interruptHandler :: Env -> EvaluatedForm -> Interrupt -> InputT IO ()
interruptHandler env form _ = do
outputStrLn "Interrupted with CTRL+C\n\
\You can use the !exit command or CTRL+D to exit"
loop env form
processInput :: Env -> String -> EvaluatedForm -> IO Env
processInput env input form = do
let asts = parseTricu input let asts = parseTricu input
newEnv = evalTricu env asts newEnv = evalTricu env asts
case Map.lookup "!result" newEnv of if
Just r -> do | Just r <- Map.lookup "__result" newEnv -> do
putStrLn $ "tricu > " ++ formatResult form r putStrLn $ "tricu > " ++ decodeResult r
Nothing -> pure () | otherwise -> return ()
return newEnv return newEnv
errorHandler :: Env -> SomeException -> IO (Env) errorHandler :: Env -> SomeException -> IO (Env)
@ -164,27 +60,9 @@ repl env = runInputT settings (withInterrupt (loop env Decode))
strip :: String -> String strip :: String -> String
strip = dropWhileEnd isSpace . dropWhile isSpace strip = dropWhileEnd isSpace . dropWhile isSpace
handleSave :: Env -> EvaluatedForm -> InputT IO () decodeResult :: T -> String
handleSave env form = do decodeResult tc
let fset = setComplete completeFilename defaultSettings | Right num <- toNumber tc = show num
path <- runInputT fset $ | Right str <- toString tc = "\"" ++ str ++ "\""
getInputLineWithInitial "File to save < " ("", "") | Right list <- toList tc = "[" ++ intercalate ", " (map decodeResult list) ++ "]"
| otherwise = formatResult TreeCalculus tc
case path of
Nothing -> do
outputStrLn "Save cancelled"
loop env form
Just p -> do
let definitions = Map.toList $ Map.delete "!result" env
filepath = strip p
outputStrLn "Starting save..."
liftIO $ writeFile filepath ""
outputStrLn "File created..."
forM_ definitions $ \(name, value) -> do
let content = name ++ " = " ++ formatResult TreeCalculus value ++ "\n"
outputStrLn $ "Writing definition: " ++ name ++ " with length " ++ show (length content)
liftIO $ appendFile filepath content
outputStrLn $ "Saved " ++ show (length definitions) ++ " definitions to " ++ p
loop env form

View File

@ -1,5 +1,6 @@
module Research where module Research where
import Control.Monad.State
import Data.List (intercalate) import Data.List (intercalate)
import Data.Map (Map) import Data.Map (Map)
import Data.Text (Text, replace) import Data.Text (Text, replace)
@ -18,60 +19,47 @@ data TricuAST
| SInt Int | SInt Int
| SStr String | SStr String
| SList [TricuAST] | SList [TricuAST]
| SDef String [String] TricuAST | SFunc String [String] TricuAST
| SApp TricuAST TricuAST | SApp TricuAST TricuAST
| TLeaf | TLeaf
| TStem TricuAST | TStem TricuAST
| TFork TricuAST TricuAST | TFork TricuAST TricuAST
| SLambda [String] TricuAST | SLambda [String] TricuAST
| SEmpty | SEmpty
| SImport String String
deriving (Show, Eq, Ord) deriving (Show, Eq, Ord)
-- Lexer Tokens -- Lexer Tokens
data LToken data LToken
= LKeywordT = LKeywordT
| LIdentifier String | LIdentifier String
| LNamespace String
| LIntegerLiteral Int | LIntegerLiteral Int
| LStringLiteral String | LStringLiteral String
| LAssign | LAssign
| LColon | LColon
| LDot
| LBackslash | LBackslash
| LOpenParen | LOpenParen
| LCloseParen | LCloseParen
| LOpenBracket | LOpenBracket
| LCloseBracket | LCloseBracket
| LNewline | LNewline
| LImport String String
deriving (Show, Eq, Ord) deriving (Show, Eq, Ord)
-- Output formats -- Output formats
data EvaluatedForm = TreeCalculus | FSL | AST | Ternary | Ascii | Decode data EvaluatedForm = TreeCalculus | FSL | AST | Ternary | Ascii
deriving (Show, Data, Typeable) deriving (Show, Data, Typeable)
-- Environment containing previously evaluated TC terms -- Environment containing previously evaluated TC terms
type Env = Map.Map String T type Env = Map.Map String T
-- Tree Calculus Reduction Rules -- Tree Calculus Reduction
{-
The t operator is left associative.
1. t t a b -> a
2. t (t a) b c -> a c (b c)
3a. t (t a b) c t -> a
3b. t (t a b) c (t u) -> b u
3c. t (t a b) c (t u v) -> c u v
-}
apply :: T -> T -> T apply :: T -> T -> T
apply (Fork Leaf a) _ = a
apply (Fork (Stem a) b) c = apply (apply a c) (apply b c)
apply (Fork (Fork a b) c) Leaf = a
apply (Fork (Fork a b) c) (Stem u) = apply b u
apply (Fork (Fork a b) c) (Fork u v) = apply (apply c u) v
-- Left associative `t`
apply Leaf b = Stem b apply Leaf b = Stem b
apply (Stem a) b = Fork a b apply (Stem a) b = Fork a b
apply (Fork Leaf a) _ = a
apply (Fork (Stem a1) a2) b = apply (apply a1 b) (apply a2 b)
apply (Fork (Fork a1 a2) a3) Leaf = a1
apply (Fork (Fork a1 a2) a3) (Stem u) = apply a2 u
apply (Fork (Fork a1 a2) a3) (Fork u v) = apply (apply a3 u) v
-- Booleans -- Booleans
_false :: T _false :: T
@ -85,7 +73,7 @@ _not = Fork (Fork _true (Fork Leaf _false)) Leaf
-- Marshalling -- Marshalling
ofString :: String -> T ofString :: String -> T
ofString str = ofList $ map (ofNumber . fromEnum) str ofString str = ofList (map ofNumber (map fromEnum str))
ofNumber :: Int -> T ofNumber :: Int -> T
ofNumber 0 = Leaf ofNumber 0 = Leaf
@ -95,7 +83,8 @@ ofNumber n =
(ofNumber (n `div` 2)) (ofNumber (n `div` 2))
ofList :: [T] -> T ofList :: [T] -> T
ofList = foldr Fork Leaf ofList [] = Leaf
ofList (x:xs) = Fork x (ofList xs)
toNumber :: T -> Either String Int toNumber :: T -> Either String Int
toNumber Leaf = Right 0 toNumber Leaf = Right 0
@ -126,14 +115,13 @@ formatResult FSL = show
formatResult AST = show . toAST formatResult AST = show . toAST
formatResult Ternary = toTernaryString formatResult Ternary = toTernaryString
formatResult Ascii = toAscii formatResult Ascii = toAscii
formatResult Decode = decodeResult
toSimpleT :: String -> String toSimpleT :: String -> String
toSimpleT s = T.unpack toSimpleT s = T.unpack
$ replace "Fork" "t" $ replace "Fork" "t"
$ replace "Stem" "t" $ replace "Stem" "t"
$ replace "Leaf" "t" $ replace "Leaf" "t"
$ T.pack s $ (T.pack s)
toTernaryString :: T -> String toTernaryString :: T -> String
toTernaryString Leaf = "0" toTernaryString Leaf = "0"
@ -159,19 +147,4 @@ toAscii tree = go tree "" True
++ go left (prefix ++ (if isLast then " " else "| ")) False ++ go left (prefix ++ (if isLast then " " else "| ")) False
++ go right (prefix ++ (if isLast then " " else "| ")) True ++ go right (prefix ++ (if isLast then " " else "| ")) True
decodeResult :: T -> String -- Utility
decodeResult Leaf = "t"
decodeResult tc =
case (toString tc, toList tc, toNumber tc) of
(Right s, _, _) | all isCommonChar s -> "\"" ++ s ++ "\""
(_, _, Right n) -> show n
(_, Right xs@(_:_), _) -> "[" ++ intercalate ", " (map decodeResult xs) ++ "]"
(_, Right [], _) -> "[]"
_ -> formatResult TreeCalculus tc
where
isCommonChar c =
let n = fromEnum c
in (n >= 32 && n <= 126)
|| n == 9
|| n == 10
|| n == 13

View File

@ -9,7 +9,6 @@ import Research
import Control.Exception (evaluate, try, SomeException) import Control.Exception (evaluate, try, SomeException)
import Control.Monad.IO.Class (liftIO) import Control.Monad.IO.Class (liftIO)
import Data.List (isInfixOf)
import Test.Tasty import Test.Tasty
import Test.Tasty.HUnit import Test.Tasty.HUnit
import Test.Tasty.QuickCheck import Test.Tasty.QuickCheck
@ -26,218 +25,180 @@ runTricu s = show $ result (evalTricu Map.empty $ parseTricu s)
tests :: TestTree tests :: TestTree
tests = testGroup "Tricu Tests" tests = testGroup "Tricu Tests"
[ lexer [ lexerTests
, parser , parserTests
, simpleEvaluation , evaluationTests
, lambdas , lambdaEvalTests
, providedLibraries , libraryTests
, fileEval , fileEvaluationTests
, modules
, demos
, decoding
] ]
lexer :: TestTree lexerTests :: TestTree
lexer = testGroup "Lexer Tests" lexerTests = testGroup "Lexer Tests"
[ testCase "Lex simple identifiers" $ do [ testCase "Lex simple identifiers" $ do
let input = "x a b = a" let input = "x a b = a"
expect = Right [LIdentifier "x", LIdentifier "a", LIdentifier "b", LAssign, LIdentifier "a"] expect = Right [LIdentifier "x", LIdentifier "a", LIdentifier "b", LAssign, LIdentifier "a"]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex Tree Calculus terms" $ do , testCase "Lex Tree Calculus terms" $ do
let input = "t t t" let input = "t t t"
expect = Right [LKeywordT, LKeywordT, LKeywordT] expect = Right [LKeywordT, LKeywordT, LKeywordT]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex escaped characters in strings" $ do , testCase "Lex escaped characters in strings" $ do
let input = "\"hello\\nworld\"" let input = "\"hello\\nworld\""
expect = Right [LStringLiteral "hello\\nworld"] expect = Right [LStringLiteral "hello\\nworld"]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex mixed literals" $ do , testCase "Lex mixed literals" $ do
let input = "t \"string\" 42" let input = "t \"string\" 42"
expect = Right [LKeywordT, LStringLiteral "string", LIntegerLiteral 42] expect = Right [LKeywordT, LStringLiteral "string", LIntegerLiteral 42]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex invalid token" $ do , testCase "Lex invalid token" $ do
let input = "&invalid" let input = "&invalid"
case runParser tricuLexer "" input of case runParser tricuLexer "" input of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected lexer to fail on invalid token" Right _ -> assertFailure "Expected lexer to fail on invalid token"
, testCase "Drop trailing whitespace in definitions" $ do , testCase "Drop trailing whitespace in definitions" $ do
let input = "x = 5 " let input = "x = 5 "
expect = [LIdentifier "x",LAssign,LIntegerLiteral 5] expect = [LIdentifier "x",LAssign,LIntegerLiteral 5]
case (runParser tricuLexer "" input) of case (runParser tricuLexer "" input) of
Left _ -> assertFailure "Failed to lex input" Left _ -> assertFailure "Failed to lex input"
Right i -> i @?= expect Right i -> i @?= expect
, testCase "Error when using invalid characters in identifiers" $ do , testCase "Error when using invalid characters in identifiers" $ do
case (runParser tricuLexer "" "!result = 5") of case (runParser tricuLexer "" "__result = 5") of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of !result" Right _ -> assertFailure "Expected failure when trying to assign the value of __result"
] ]
parser :: TestTree parserTests :: TestTree
parser = testGroup "Parser Tests" parserTests = testGroup "Parser Tests"
[ testCase "Error when assigning a value to T" $ do [ testCase "Error when assigning a value to T" $ do
let tokens = lexTricu "t = x" let tokens = lexTricu "t = x"
case parseSingleExpr tokens of case parseSingleExpr tokens of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of T" Right _ -> assertFailure "Expected failure when trying to assign the value of T"
, testCase "Parse function definitions" $ do , testCase "Parse function definitions" $ do
let input = "x = (\\a b c : a)" let input = "x = (\\a b c : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a")))) expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested Tree Calculus terms" $ do , testCase "Parse nested Tree Calculus terms" $ do
let input = "t (t t) t" let input = "t (t t) t"
expect = SApp (SApp TLeaf (SApp TLeaf TLeaf)) TLeaf expect = SApp (SApp TLeaf (SApp TLeaf TLeaf)) TLeaf
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse sequential Tree Calculus terms" $ do , testCase "Parse sequential Tree Calculus terms" $ do
let input = "t t t" let input = "t t t"
expect = SApp (SApp TLeaf TLeaf) TLeaf expect = SApp (SApp TLeaf TLeaf) TLeaf
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse mixed list literals" $ do , testCase "Parse mixed list literals" $ do
let input = "[t (\"hello\") t]" let input = "[t (\"hello\") t]"
expect = SList [TLeaf, SStr "hello", TLeaf] expect = SList [TLeaf, SStr "hello", TLeaf]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse function with applications" $ do , testCase "Parse function with applications" $ do
let input = "f = (\\x : t x)" let input = "f = (\\x : t x)"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x"))) expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested lists" $ do , testCase "Parse nested lists" $ do
let input = "[t [(t t)]]" let input = "[t [(t t)]]"
expect = SList [TLeaf,SList [SApp TLeaf TLeaf]] expect = SList [TLeaf,SList [SApp TLeaf TLeaf]]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse complex parentheses" $ do , testCase "Parse complex parentheses" $ do
let input = "t (t t (t t))" let input = "t (t t (t t))"
expect = SApp TLeaf (SApp (SApp TLeaf TLeaf) (SApp TLeaf TLeaf)) expect = SApp TLeaf (SApp (SApp TLeaf TLeaf) (SApp TLeaf TLeaf))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse empty list" $ do , testCase "Parse empty list" $ do
let input = "[]" let input = "[]"
expect = SList [] expect = SList []
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse multiple nested lists" $ do , testCase "Parse multiple nested lists" $ do
let input = "[[t t] [t (t t)]]" let input = "[[t t] [t (t t)]]"
expect = SList [SList [TLeaf,TLeaf],SList [TLeaf,SApp TLeaf TLeaf]] expect = SList [SList [TLeaf,TLeaf],SList [TLeaf,SApp TLeaf TLeaf]]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse whitespace variance" $ do , testCase "Parse whitespace variance" $ do
let input1 = "[t t]" let input1 = "[t t]"
let input2 = "[ t t ]" let input2 = "[ t t ]"
expect = SList [TLeaf, TLeaf] expect = SList [TLeaf, TLeaf]
parseSingle input1 @?= expect parseSingle input1 @?= expect
parseSingle input2 @?= expect parseSingle input2 @?= expect
, testCase "Parse string in list" $ do , testCase "Parse string in list" $ do
let input = "[(\"hello\")]" let input = "[(\"hello\")]"
expect = SList [SStr "hello"] expect = SList [SStr "hello"]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse parentheses inside list" $ do , testCase "Parse parentheses inside list" $ do
let input = "[t (t t)]" let input = "[t (t t)]"
expect = SList [TLeaf,SApp TLeaf TLeaf] expect = SList [TLeaf,SApp TLeaf TLeaf]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested parentheses in function body" $ do , testCase "Parse nested parentheses in function body" $ do
let input = "f = (\\x : t (t (t t)))" let input = "f = (\\x : t (t (t t)))"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf)))) expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse lambda abstractions" $ do , testCase "Parse lambda abstractions" $ do
let input = "(\\a : a)" let input = "(\\a : a)"
expect = (SLambda ["a"] (SVar "a")) expect = (SLambda ["a"] (SVar "a"))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse multiple arguments to lambda abstractions" $ do , testCase "Parse multiple arguments to lambda abstractions" $ do
let input = "x = (\\a b : a)" let input = "x = (\\a b : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a"))) expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Grouping T terms with parentheses in function application" $ do , testCase "Grouping T terms with parentheses in function application" $ do
let input = "x = (\\a : a)\nx (t)" let input = "x = (\\a : a)\nx (t)"
expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf] expect = [SFunc "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
parseTricu input @?= expect parseTricu input @?= expect
, testCase "Comments 1" $ do , testCase "Comments 1" $ do
let input = "(t) (t) -- (t)" let input = "(t) (t) -- (t)"
expect = [SApp TLeaf TLeaf] expect = [SApp TLeaf TLeaf]
parseTricu input @?= expect parseTricu input @?= expect
, testCase "Comments 2" $ do , testCase "Comments 2" $ do
let input = "(t) -- (t) -- (t)" let input = "(t) -- (t) -- (t)"
expect = [TLeaf] expect = [TLeaf]
parseTricu input @?= expect parseTricu input @?= expect
] ]
simpleEvaluation :: TestTree evaluationTests :: TestTree
simpleEvaluation = testGroup "Evaluation Tests" evaluationTests = testGroup "Evaluation Tests"
[ testCase "Evaluate single Leaf" $ do [ testCase "Evaluate single Leaf" $ do
let input = "t" let input = "t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Leaf (result $ evalSingle Map.empty ast) @?= Leaf
, testCase "Evaluate single Stem" $ do , testCase "Evaluate single Stem" $ do
let input = "t t" let input = "t t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Stem Leaf (result $ evalSingle Map.empty ast) @?= Stem Leaf
, testCase "Evaluate single Fork" $ do , testCase "Evaluate single Fork" $ do
let input = "t t t" let input = "t t t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Fork Leaf Leaf (result $ evalSingle Map.empty ast) @?= Fork Leaf Leaf
, testCase "Evaluate nested Fork and Stem" $ do , testCase "Evaluate nested Fork and Stem" $ do
let input = "t (t t) t" let input = "t (t t) t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Fork (Stem Leaf) Leaf (result $ evalSingle Map.empty ast) @?= Fork (Stem Leaf) Leaf
, testCase "Evaluate `not` function" $ do , testCase "Evaluate `not` function" $ do
let input = "t (t (t t) (t t t)) t" let input = "t (t (t t) (t t t)) t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= (result $ evalSingle Map.empty ast) @?=
Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
, testCase "Environment updates with definitions" $ do , testCase "Environment updates with definitions" $ do
let input = "x = t\ny = x" let input = "x = t\ny = x"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
Map.lookup "x" env @?= Just Leaf Map.lookup "x" env @?= Just Leaf
Map.lookup "y" env @?= Just Leaf Map.lookup "y" env @?= Just Leaf
, testCase "Variable substitution" $ do , testCase "Variable substitution" $ do
let input = "x = t t\ny = t x\ny" let input = "x = t t\ny = t x\ny"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
(result env) @?= Stem (Stem Leaf) (result env) @?= Stem (Stem Leaf)
, testCase "Multiline input evaluation" $ do , testCase "Multiline input evaluation" $ do
let input = "x = t\ny = t t\nx" let input = "x = t\ny = t t\nx"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
(result env) @?= Leaf (result env) @?= Leaf
, testCase "Evaluate string literal" $ do , testCase "Evaluate string literal" $ do
let input = "\"hello\"" let input = "\"hello\""
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofString "hello" (result $ evalSingle Map.empty ast) @?= ofString "hello"
, testCase "Evaluate list literal" $ do , testCase "Evaluate list literal" $ do
let input = "[t (t t)]" let input = "[t (t t)]"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofList [Leaf, Stem Leaf] (result $ evalSingle Map.empty ast) @?= ofList [Leaf, Stem Leaf]
, testCase "Evaluate empty list" $ do , testCase "Evaluate empty list" $ do
let input = "[]" let input = "[]"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofList [] (result $ evalSingle Map.empty ast) @?= ofList []
, testCase "Evaluate variable dependency chain" $ do , testCase "Evaluate variable dependency chain" $ do
let input = "x = t (t t)\n \ let input = "x = t (t t)\n \
\ y = x\n \ \ y = x\n \
@ -246,17 +207,10 @@ simpleEvaluation = testGroup "Evaluation Tests"
\ variablewithamuchlongername" \ variablewithamuchlongername"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
(result env) @?= (Stem (Stem Leaf)) (result env) @?= (Stem (Stem Leaf))
, testCase "Evaluate variable shadowing" $ do
, testCase "Immutable definitions" $ do
let input = "x = t t\nx = t\nx" let input = "x = t t\nx = t\nx"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
result <- try (evaluate (runTricu input)) :: IO (Either SomeException String) (result env) @?= Leaf
case result of
Left _ -> return ()
Right _ -> assertFailure "Expected evaluation error"
, testCase "Apply identity to Boolean Not" $ do , testCase "Apply identity to Boolean Not" $ do
let not = "(t (t (t t) (t t t)) t)" let not = "(t (t (t t) (t t t)) t)"
let input = "x = (\\a : a)\nx " ++ not let input = "x = (\\a : a)\nx " ++ not
@ -264,294 +218,194 @@ simpleEvaluation = testGroup "Evaluation Tests"
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
] ]
lambdas :: TestTree lambdaEvalTests :: TestTree
lambdas = testGroup "Lambda Evaluation Tests" lambdaEvalTests = testGroup "Lambda Evaluation Tests"
[ testCase "Lambda Identity Function" $ do [ testCase "Lambda Identity Function" $ do
let input = "id = (\\x : x)\nid t" let input = "id = (\\x : x)\nid t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda Constant Function (K combinator)" $ do , testCase "Lambda Constant Function (K combinator)" $ do
let input = "k = (\\x y : x)\nk t (t t)" let input = "k = (\\x y : x)\nk t (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda Application with Variable" $ do , testCase "Lambda Application with Variable" $ do
let input = "id = (\\x : x)\nval = t t\nid val" let input = "id = (\\x : x)\nval = t t\nid val"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda Application with Multiple Arguments" $ do , testCase "Lambda Application with Multiple Arguments" $ do
let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)" let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Nested Lambda Application" $ do , testCase "Nested Lambda Application" $ do
let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t" let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with a complex body" $ do , testCase "Lambda with a complex body" $ do
let input = "f = (\\x : t (t x))\nf t" let input = "f = (\\x : t (t x))\nf t"
runTricu input @?= "Stem (Stem Leaf)" runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda returning a function" $ do , testCase "Lambda returning a function" $ do
let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)" let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with Shadowing" $ do , testCase "Lambda with Shadowing" $ do
let input = "f = (\\x : (\\x : x))\nf t (t t)" let input = "f = (\\x : (\\x : x))\nf t (t t)"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda returning another lambda" $ do , testCase "Lambda returning another lambda" $ do
let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)" let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with free variables" $ do , testCase "Lambda with free variables" $ do
let input = "y = t t\nf = (\\x : y)\nf t" let input = "y = t t\nf = (\\x : y)\nf t"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "SKI Composition" $ do , testCase "SKI Composition" $ do
let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)" let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)"
runTricu input @?= "Stem (Stem Leaf)" runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda with multiple parameters and application" $ do , testCase "Lambda with multiple parameters and application" $ do
let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)" let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda with nested application in the body" $ do , testCase "Lambda with nested application in the body" $ do
let input = "f = (\\x : t (t (t x)))\nf t" let input = "f = (\\x : t (t (t x)))\nf t"
runTricu input @?= "Stem (Stem (Stem Leaf))" runTricu input @?= "Stem (Stem (Stem Leaf))"
, testCase "Lambda returning a function and applying it" $ do , testCase "Lambda returning a function and applying it" $ do
let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)" let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)"
runTricu input @?= "Fork Leaf (Stem Leaf)" runTricu input @?= "Fork Leaf (Stem Leaf)"
, testCase "Lambda applying a variable" $ do , testCase "Lambda applying a variable" $ do
let input = "id = (\\x : x)\na = t t\nid a" let input = "id = (\\x : x)\na = t t\nid a"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Nested lambda abstractions in the same expression" $ do , testCase "Nested lambda abstractions in the same expression" $ do
let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t" let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with a string literal" $ do
, testCase "Lambda applied to string literal" $ do
let input = "f = (\\x : x)\nf \"hello\"" let input = "f = (\\x : x)\nf \"hello\""
runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))" runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
, testCase "Lambda with an integer literal" $ do
, testCase "Lambda applied to integer literal" $ do
let input = "f = (\\x : x)\nf 42" let input = "f = (\\x : x)\nf 42"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))" runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
, testCase "Lambda with a list literal" $ do
, testCase "Lambda applied to list literal" $ do
let input = "f = (\\x : x)\nf [t (t t)]" let input = "f = (\\x : x)\nf [t (t t)]"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)" runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
, testCase "Lambda containing list literal" $ do
let input = "(\\a : [(a)]) 1"
runTricu input @?= "Fork (Fork (Stem Leaf) Leaf) Leaf"
] ]
providedLibraries :: TestTree libraryTests :: TestTree
providedLibraries = testGroup "Library Tests" libraryTests = testGroup "Library Tests"
[ testCase "Triage test Leaf" $ do [ testCase "K combinator 1" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "k (t) (t t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "K combinator 2" $ do
library <- evaluateFile "./lib/base.tri"
let input = "k (t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "K combinator 3" $ do
library <- evaluateFile "./lib/base.tri"
let input = "k (t t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf
, testCase "S combinator" $ do
library <- evaluateFile "./lib/base.tri"
let input = "s (t) (t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf (Stem Leaf)
, testCase "SKK == I (fully expanded)" $ do
library <- evaluateFile "./lib/base.tri"
let input = "s k k"
env = evalTricu library (parseTricu input)
result env @?= Fork (Stem (Stem Leaf)) (Stem Leaf)
, testCase "I combinator" $ do
library <- evaluateFile "./lib/base.tri"
let input = "i not?"
env = evalTricu library (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) (Fork Leaf (Fork Leaf Leaf))
, testCase "Triage test Leaf" $ do
library <- evaluateFile "./lib/base.tri"
let input = "test t" let input = "test t"
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Leaf\"" env @?= "\"Leaf\""
, testCase "Triage test (Stem Leaf)" $ do , testCase "Triage test (Stem Leaf)" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "test (t t)" let input = "test (t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Stem\"" env @?= "\"Stem\""
, testCase "Triage test (Fork Leaf Leaf)" $ do , testCase "Triage test (Fork Leaf Leaf)" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "test (t t t)" let input = "test (t t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Fork\"" env @?= "\"Fork\""
, testCase "Boolean NOT: true" $ do , testCase "Boolean NOT: true" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "not? true" let input = "not? true"
env = result $ evalTricu library (parseTricu input) env = result $ evalTricu library (parseTricu input)
env @?= Leaf env @?= Leaf
, testCase "Boolean NOT: false" $ do , testCase "Boolean NOT: false" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "not? false" let input = "not? false"
env = result $ evalTricu library (parseTricu input) env = result $ evalTricu library (parseTricu input)
env @?= Stem Leaf env @?= Stem Leaf
, testCase "Boolean AND TF" $ do , testCase "Boolean AND TF" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "and? (t t) (t)" let input = "and? (t t) (t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "Boolean AND FT" $ do , testCase "Boolean AND FT" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "and? (t) (t t)" let input = "and? (t) (t t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "Boolean AND FF" $ do , testCase "Boolean AND FF" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "and? (t) (t)" let input = "and? (t) (t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "Boolean AND TT" $ do , testCase "Boolean AND TT" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "and? (t t) (t t)" let input = "and? (t t) (t t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "List head" $ do , testCase "List head" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "head [(t) (t t) (t t t)]" let input = "head [(t) (t t) (t t t)]"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "List tail" $ do , testCase "List tail" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "head (tail (tail [(t) (t t) (t t t)]))" let input = "head (tail (tail [(t) (t t) (t t t)]))"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf result env @?= Fork Leaf Leaf
, testCase "List map" $ do , testCase "List map" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))" let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf result env @?= Fork Leaf Leaf
, testCase "Empty list check" $ do , testCase "Empty list check" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "emptyList? []" let input = "emptyList? []"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "Non-empty list check" $ do , testCase "Non-empty list check" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "not? (emptyList? [(1) (2) (3)])" let input = "not? (emptyList? [(1) (2) (3)])"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "Concatenate strings" $ do , testCase "Concatenate strings" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "append \"Hello, \" \"world!\"" let input = "lconcat \"Hello, \" \"world!\""
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Hello, world!\"" env @?= "\"Hello, world!\""
, testCase "Verifying Equality" $ do , testCase "Verifying Equality" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "equal? (t t t) (t t t)" let input = "equal? (t t t) (t t t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
] ]
fileEval :: TestTree fileEvaluationTests :: TestTree
fileEval = testGroup "File evaluation tests" fileEvaluationTests = testGroup "Evaluation tests"
[ testCase "Forks" $ do [ testCase "Forks" $ do
res <- liftIO $ evaluateFileResult "./test/fork.tri" res <- liftIO $ evaluateFileResult "./test/fork.tri"
res @?= Fork Leaf Leaf res @?= Fork Leaf Leaf
, testCase "File ends with comment" $ do , testCase "File ends with comment" $ do
res <- liftIO $ evaluateFileResult "./test/comments-1.tri" res <- liftIO $ evaluateFileResult "./test/comments-1.tri"
res @?= Fork (Stem Leaf) Leaf res @?= Fork (Stem Leaf) Leaf
, testCase "Mapping and Equality" $ do , testCase "Mapping and Equality" $ do
library <- liftIO $ evaluateFile "./lib/list.tri" res <- liftIO $ evaluateFileResult "./test/map.tri"
fEnv <- liftIO $ evaluateFileWithContext library "./test/map.tri" res @?= Stem Leaf
(mainResult fEnv) @?= Stem Leaf
, testCase "Eval and decoding string" $ do , testCase "Eval and decoding string" $ do
library <- liftIO $ evaluateFile "./lib/list.tri" library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./test/string.tri" res <- liftIO $ evaluateFileWithContext library "./test/string.tri"
decodeResult (result res) @?= "\"String test!\"" decodeResult (result res) @?= "\"String test!\""
] ]
modules :: TestTree
modules = testGroup "Test modules"
[ testCase "Detect cyclic dependencies" $ do
result <- try (liftIO $ evaluateFileResult "./test/cycle-1.tri") :: IO (Either SomeException T)
case result of
Left e -> do
let errorMsg = show e
if "Encountered cyclic import" `isInfixOf` errorMsg
then return ()
else assertFailure $ "Unexpected error: " ++ errorMsg
Right _ -> assertFailure "Expected cyclic dependencies"
, testCase "Module imports and namespacing" $ do
res <- liftIO $ evaluateFileResult "./test/namespace-A.tri"
res @?= Leaf
, testCase "Multiple imports" $ do
res <- liftIO $ evaluateFileResult "./test/vars-A.tri"
res @?= Leaf
, testCase "Error on unresolved variable" $ do
result <- try (liftIO $ evaluateFileResult "./test/unresolved-A.tri") :: IO (Either SomeException T)
case result of
Left e -> do
let errorMsg = show e
if "undefinedVar" `isInfixOf` errorMsg
then return ()
else assertFailure $ "Unexpected error: " ++ errorMsg
Right _ -> assertFailure "Expected unresolved variable error"
, testCase "Multi-level imports" $ do
res <- liftIO $ evaluateFileResult "./test/multi-level-A.tri"
res @?= Leaf
, testCase "Lambda expression namespaces" $ do
res <- liftIO $ evaluateFileResult "./test/lambda-A.tri"
res @?= Leaf
, testCase "Local namespace import chain" $ do
res <- liftIO $ evaluateFileResult "./test/local-ns/1.tri"
res @?= Fork (Stem Leaf) (Fork (Stem Leaf) Leaf)
]
-- All of our demo tests are also module tests
demos :: TestTree
demos = testGroup "Test provided demo functionality"
[ testCase "Structural equality demo" $ do
res <- liftIO $ evaluateFileResult "./demos/equality.tri"
decodeResult res @?= "t t"
, testCase "Convert values back to source code demo" $ do
res <- liftIO $ evaluateFileResult "./demos/toSource.tri"
decodeResult res @?= "\"(t (t (t t) (t t t)) (t t (t t t)))\""
, testCase "Determining the size of functions" $ do
res <- liftIO $ evaluateFileResult "./demos/size.tri"
decodeResult res @?= "454"
, testCase "Level Order Traversal demo" $ do
res <- liftIO $ evaluateFileResult "./demos/levelOrderTraversal.tri"
decodeResult res @?= "\"\n1 \n2 3 \n4 5 6 7 \n8 11 10 9 12 \""
]
decoding :: TestTree
decoding = testGroup "Decoding Tests"
[ testCase "Decode Leaf" $ do
decodeResult Leaf @?= "t"
, testCase "Decode list of non-ASCII numbers" $ do
let input = ofList [ofNumber 1, ofNumber 14, ofNumber 6]
decodeResult input @?= "[1, 14, 6]"
, testCase "Decode list of ASCII numbers as a string" $ do
let input = ofList [ofNumber 97, ofNumber 98, ofNumber 99]
decodeResult input @?= "\"abc\""
, testCase "Decode small number" $ do
decodeResult (ofNumber 42) @?= "42"
, testCase "Decode large number" $ do
decodeResult (ofNumber 9999) @?= "9999"
, testCase "Decode string in list" $ do
let input = ofList [ofString "hello", ofString "world"]
decodeResult input @?= "[\"hello\", \"world\"]"
, testCase "Decode mixed list with strings" $ do
let input = ofList [ofString "hello", ofNumber 42, ofString "world"]
decodeResult input @?= "[\"hello\", 42, \"world\"]"
, testCase "Decode nested lists with strings" $ do
let input = ofList [ofList [ofString "nested"], ofString "string"]
decodeResult input @?= "[[\"nested\"], \"string\"]"
]

1
test/ascii.tri Normal file
View File

@ -0,0 +1 @@
t (t (t (t (t t) (t t t)) t) t t) t

1
test/assignment.tri Normal file
View File

@ -0,0 +1 @@
x = t (t t) t

View File

@ -2,7 +2,7 @@
-- t (t t) (t (t t t)) -- t (t t) (t (t t t))
-- t (t t t) (t t) -- t (t t t) (t t)
-- x = (\a : a) -- x = (\a : a)
main = t (t t) t -- Fork (Stem Leaf) Leaf t (t t) t -- Fork (Stem Leaf) Leaf
-- t t -- t t
-- x -- x
-- x = (\a : a) -- x = (\a : a)

View File

@ -1,4 +0,0 @@
!import "cycle-2.tri" Cycle2
cycle1 = t Cycle2.cycle2

View File

@ -1,4 +0,0 @@
!import "cycle-1.tri" Cycle1
cycle2 = t Cycle1.cycle1

View File

@ -1 +1 @@
main = t t t t t t

View File

@ -1 +0,0 @@
main = (\x : x) t

View File

@ -1,4 +0,0 @@
!import "2.tri" Two
main = Two.x

View File

@ -1,2 +0,0 @@
!import "3.tri" !Local

View File

@ -1 +0,0 @@
x = 3

View File

@ -1,2 +1,24 @@
x = map (\i : append "Successfully concatenated " i) [("two strings!")] false = t
main = equal? x [("Successfully concatenated two strings!")] true = t t
_ = t
k = t t
i = t (t k) t
s = t (t (k t)) t
m = s i i
b = s (k s) k
c = s (s (k s) (s (k k) s)) (k k)
iC = (\a b c : s a (k c) b)
yi = (\i : b m (c b (i m)))
y = yi iC
triage = (\a b c : t (t a b) c)
pair = t
matchList = (\oe oc : triage oe _ oc)
lconcat = y (\self : matchList (\k : k) (\h r k : pair h (self r k)))
hmap = y (\self : matchList (\f : t) (\hd tl f : pair (f hd) (self tl f)))
map = (\f l : hmap l f)
lAnd = triage (\x : false) (\_ x : x) (\_ _ x : x)
lOr = triage (\x : x) (\_ _ : true) (\_ _ x : true)
equal = y (\self : triage (triage true (\z : false) (\y z : false)) (\ax : triage false (self ax) (\y z : false)) (\ax ay : triage false (\z : false) (\bx by : lAnd (self ax bx) (self ay by))))
x = map (\i : lconcat "Successfully concatenated " i) [("two strings!")]
equal x [("Successfully concatenated two strings!")]

View File

@ -1,2 +0,0 @@
!import "multi-level-B.tri" B
main = B.main

View File

@ -1,2 +0,0 @@
!import "multi-level-C.tri" C
main = C.val

View File

@ -1 +0,0 @@
val = t

View File

@ -1,7 +0,0 @@
!import "lib/base.tri"
!import "test/named-imports/2.tri"
!import "test/named-imports/3.tri" ThreeRenamed
main = equal? (equal? Two.x 2) (equal? ThreeRenamed.x 3)

View File

@ -1,2 +0,0 @@
x = 2

View File

@ -1,2 +0,0 @@
x = 3

View File

@ -1,2 +0,0 @@
!import "namespace-B.tri" B
main = B.x

View File

@ -1 +0,0 @@
x = t

View File

@ -1,21 +0,0 @@
compose = \f g x : f (g x)
succ = y (\self :
triage
1
t
(triage
(t (t t))
(\_ tail : t t (self tail))
t))
size = (\x :
(y (\self x :
compose succ
(triage
(\x : x)
self
(\x y : compose (self x) (self y))
x)) x 0))
size size

View File

@ -1 +1 @@
head (map (\i : append "String " i) [("test!")]) head (map (\i : lconcat "String " i) [("test!")])

View File

@ -1 +0,0 @@
main = undefinedVar

View File

@ -1,6 +0,0 @@
!import "vars-B.tri" B
!import "vars-C.tri" C
main = B.y (C.z)

View File

@ -1 +0,0 @@
y = \x : x

View File

@ -1 +0,0 @@
z = t

View File

@ -1,7 +1,7 @@
cabal-version: 1.12 cabal-version: 1.12
name: tricu name: tricu
version: 0.18.1 version: 0.7.0
description: A micro-language for exploring Tree Calculus description: A micro-language for exploring Tree Calculus
author: James Eversole author: James Eversole
maintainer: james@eversole.co maintainer: james@eversole.co
@ -26,13 +26,10 @@ executable tricu
base >=4.7 base >=4.7
, cmdargs , cmdargs
, containers , containers
, exceptions
, filepath
, haskeline , haskeline
, megaparsec , megaparsec
, mtl , mtl
, text , text
, transformers
other-modules: other-modules:
Eval Eval
FileEval FileEval
@ -55,8 +52,6 @@ test-suite tricu-tests
base base
, cmdargs , cmdargs
, containers , containers
, exceptions
, filepath
, haskeline , haskeline
, megaparsec , megaparsec
, mtl , mtl
@ -64,7 +59,6 @@ test-suite tricu-tests
, tasty-hunit , tasty-hunit
, tasty-quickcheck , tasty-quickcheck
, text , text
, transformers
default-language: Haskell2010 default-language: Haskell2010
other-modules: other-modules:
Eval Eval