module Research where import Control.Monad.State import Data.List (intercalate) import Data.Map (Map) import Data.Text (Text, replace) import System.Console.CmdArgs (Data, Typeable) import qualified Data.Map as Map import qualified Data.Text as T -- Tree Calculus Types data T = Leaf | Stem T | Fork T T deriving (Show, Eq, Ord) -- Abstract Syntax Tree for tricu data TricuAST = SVar String | SInt Int | SStr String | SList [TricuAST] | SFunc String [String] TricuAST | SApp TricuAST TricuAST | TLeaf | TStem TricuAST | TFork TricuAST TricuAST | SLambda [String] TricuAST | SEmpty deriving (Show, Eq, Ord) -- Tokens from Lexer data LToken = LKeywordT | LIdentifier String | LIntegerLiteral Int | LStringLiteral String | LAssign | LColon | LBackslash | LOpenParen | LCloseParen | LOpenBracket | LCloseBracket | LNewline deriving (Show, Eq, Ord) -- Output formats data CompiledForm = TreeCalculus | FSL | AST | Ternary | Ascii deriving (Show, Data, Typeable) -- Environment containing previously evaluated TC terms type Env = Map.Map String T -- Tree Calculus Reduction apply :: T -> T -> T apply Leaf b = Stem b apply (Stem a) b = Fork a b apply (Fork Leaf a) _ = a apply (Fork (Stem a1) a2) b = apply (apply a1 b) (apply a2 b) apply (Fork (Fork a1 a2) a3) Leaf = a1 apply (Fork (Fork a1 a2) a3) (Stem u) = apply a2 u apply (Fork (Fork a1 a2) a3) (Fork u v) = apply (apply a3 u) v -- SKI Combinators _S :: T _S = Fork (Stem (Fork Leaf Leaf)) Leaf _K :: T _K = Stem Leaf -- Identity -- We use the "point-free" style which drops a redundant node -- Full I form (SKK): Fork (Stem (Stem Leaf)) (Stem Leaf) _I :: T _I = Fork (Stem (Stem Leaf)) Leaf -- Booleans _false :: T _false = Leaf _true :: T _true = Stem Leaf _not :: T _not = Fork (Fork _true (Fork Leaf _false)) Leaf -- Marshalling ofString :: String -> T ofString str = ofList (map ofNumber (map fromEnum str)) ofNumber :: Int -> T ofNumber 0 = Leaf ofNumber n = Fork (if odd n then Stem Leaf else Leaf) (ofNumber (n `div` 2)) ofList :: [T] -> T ofList [] = Leaf ofList (x:xs) = Fork x (ofList xs) toNumber :: T -> Either String Int toNumber Leaf = Right 0 toNumber (Fork Leaf rest) = case toNumber rest of Right n -> Right (2 * n) Left err -> Left err toNumber (Fork (Stem Leaf) rest) = case toNumber rest of Right n -> Right (1 + 2 * n) Left err -> Left err toNumber _ = Left "Invalid Tree Calculus number" toString :: T -> Either String String toString tc = case toList tc of Right list -> traverse (fmap toEnum . toNumber) list Left err -> Left "Invalid Tree Calculus string" toList :: T -> Either String [T] toList Leaf = Right [] toList (Fork x rest) = case toList rest of Right xs -> Right (x : xs) Left err -> Left err toList _ = Left "Invalid Tree Calculus list" -- Outputs formatResult :: CompiledForm -> T -> String formatResult TreeCalculus = toSimpleT . show formatResult FSL = show formatResult AST = show . toAST formatResult Ternary = toTernaryString formatResult Ascii = toAscii toSimpleT :: String -> String toSimpleT s = T.unpack $ replace "Fork" "t" $ replace "Stem" "t" $ replace "Leaf" "t" $ (T.pack s) toTernaryString :: T -> String toTernaryString Leaf = "0" toTernaryString (Stem t) = "1" ++ toTernaryString t toTernaryString (Fork t1 t2) = "2" ++ toTernaryString t1 ++ toTernaryString t2 toAST :: T -> TricuAST toAST Leaf = TLeaf toAST (Stem a) = TStem (toAST a) toAST (Fork a b) = TFork (toAST a) (toAST b) toAscii :: T -> String toAscii tree = go tree "" True where go :: T -> String -> Bool -> String go Leaf prefix isLast = prefix ++ (if isLast then "`-- " else "|-- ") ++ "Leaf\n" go (Stem t) prefix isLast = prefix ++ (if isLast then "`-- " else "|-- ") ++ "Stem\n" ++ go t (prefix ++ (if isLast then " " else "| ")) True go (Fork left right) prefix isLast = prefix ++ (if isLast then "`-- " else "|-- ") ++ "Fork\n" ++ go left (prefix ++ (if isLast then " " else "| ")) False ++ go right (prefix ++ (if isLast then " " else "| ")) True -- Utility