Immutable definitions and documentation updates
All checks were successful
Test, Build, and Release / test (push) Successful in 1m22s
Test, Build, and Release / build (push) Successful in 1m23s

This commit is contained in:
James Eversole 2025-01-24 16:14:33 -06:00
parent 8b043911ca
commit 1f5a910fb2
6 changed files with 137 additions and 32 deletions

View File

@ -2,19 +2,20 @@
## Introduction
tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. [I'm](https://eversole.co) developing tricu to further research the possibilities offered by the various forms of [Tree Calculi](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf).
tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. It is fundamentally based on the application of [Tree Calculus](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf) terms, but minimal syntax sugar is included to provide a useful programming tool.
tricu offers minimal syntax sugar yet manages to provide a complete, intuitive, and familiar programming environment. There is great power in simplicity. tricu offers:
tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`.
1. `t` operator behaving by the rules of Tree Calculus
1. Function definitions/assignments
1. Lambda abstractions eliminated to Tree Calculus forms
1. List, Number, and String literals
1. Parentheses for grouping function application
## Features
These features move us cleanly out of the [turing tarpit](https://en.wikipedia.org/wiki/Turing_tarpit) territory that you may find yourself in if you try working only with the `t` operator.
tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`. This project was named "sapling" until I discovered the name is already being used for other (completely unrelated) programming language development projects.
- Tree Calculus operator: `t`
- Assignments: `x = t t`
- Lambda abstraction syntax: `id = (\a : a)`
- List, Number, and String literals: `[(2) ("Hello")]`
- Function application: `not (not false)`
- Higher order/first-class functions: `map (\a : lconcat a "!") [("Hello")]`
- Intensionality blurs the distinction between functions and data (see REPL examples)
- Immutability
## REPL examples
@ -26,7 +27,7 @@ tricu > "Hello, world!"
tricu < id (head (map (\i : lconcat i " world!") [("Hello, ")]))
tricu > "Hello, world!"
tricu < -- Intensionality! We can inspect the structure of a function.
tricu < -- Intensionality! We can inspect the structure of a function or data.
tricu < triage = (\a b c : t (t a b) c)
tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork")
tricu < test (t t)
@ -41,7 +42,9 @@ tricu > 12
## Installation and Use
You can easily build and/or run this project using [Nix](https://nixos.org/download/).
[Releases are available for Linux.](https://git.eversole.co/James/tricu/releases)
Or you can easily build and/or run this project using [Nix](https://nixos.org/download/).
- Quick Start (REPL):
- `nix run git+https://git.eversole.co/James/tricu`

View File

@ -1,24 +1,35 @@
-- We represent `false` with a Leaf and `true` with a Stem Leaf
false = t
true = t t
triage = (\a b c : t (t a b) c)
-- Tree Calculus representation of the Boolean `not` function
not_TC? = t (t (t t) (t t t)) (t t (t t t))
-- /demos/toSource.tri contains an explanation of `triage`
triage = (\a b c : t (t a b) c)
matchBool = (\ot of : triage
of
(\_ : ot)
(\_ _ : ot)
)
not_TC? = t (t (t t) (t t t)) (t t (t t t))
-- Lambda representation of the Boolean `not` function
not_Lambda? = matchBool false true
areEqual? = equal not_TC not_Lambda
-- Since tricu eliminates Lambda terms to SKI combinators, the tree form of many
-- functions defined via Lambda terms are larger than the most efficient TC
-- representation. Between different languages that evaluate to tree calculus
-- terms, the exact implementation of Lambda elimination may differ and lead
-- to different tree representations even if they share extensional behavior.
true_TC? = not_TC false
false_TC? = not_TC true
-- Let's see if these are the same:
lambdaEqualsTC = equal? not_TC? not_Lambda?
true_Lambda? = not_Lambda false
false_Lambda? = not_Lambda true
-- Here are some checks to verify their extensional behavior is the same:
true_TC? = not_TC? false
false_TC? = not_TC? true
areTrueEqual? = equal true_TC true_Lambda
areFalseEqual? = equal false_TC false_Lambda
true_Lambda? = not_Lambda? false
false_Lambda? = not_Lambda? true
bothTrueEqual? = equal? true_TC? true_Lambda?
bothFalseEqual? = equal? false_TC? false_Lambda?

View File

@ -2,13 +2,13 @@
-- even if it's a function. This includes lambdas which are eliminated to
-- Tree Calculus (TC) terms during evaluation.
-- Triage takes four arguments: the first three represent behaviors for each
-- `triage` takes four arguments: the first three represent behaviors for each
-- structural case in Tree Calculus (Leaf, Stem, and Fork).
-- The fourth argument is the value whose structure is inspected. By evaluating
-- the Tree Calculus term, `triage` enables branching logic based on the term's
-- shape, making it possible to perform structure-specific operations such as
-- reconstructing the terms' source code representation.
triage = (\a b c : t (t a b) c)
triage = (\leaf stem fork : t (t leaf stem) fork)
-- Base case of a single Leaf
sourceLeaf = t (head "t")
@ -34,13 +34,13 @@ sourceFork = (\convert : (\a b rest :
-- Wrapper around triage
toSource_ = y (\self arg :
triage
sourceLeaf -- Triage `a` case, Leaf
(sourceStem self) -- Triage `b` case, Stem
(sourceFork self) -- Triage `c` case, Fork
sourceLeaf -- `triage` "a" case, Leaf
(sourceStem self) -- `triage` "b" case, Stem
(sourceFork self) -- `triage` "c" case, Fork
arg) -- The term to be inspected
-- toSource takes a single TC term and returns a String
toSource = (\v : toSource_ v "")
exampleOne = toSource true -- OUT: "(t t)"
exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"
exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"

View File

@ -18,7 +18,7 @@ id = (\a : a)
pair = t
if = (\cond then else : t (t else (t t then)) t cond)
triage = (\a b c : t (t a b) c)
triage = (\leaf stem fork : t (t leaf stem) fork)
test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork")
matchBool = (\ot of : triage

View File

@ -11,8 +11,13 @@ import qualified Data.Set as Set
evalSingle :: Env -> TricuAST -> Env
evalSingle env term
| SFunc name [] body <- term =
let res = evalAST env body
in Map.insert "__result" res (Map.insert name res env)
if
| Map.member name env ->
errorWithoutStackTrace $
"Error: Identifier '" ++ name ++ "' is already defined."
| otherwise ->
let res = evalAST env body
in Map.insert "__result" res (Map.insert name res env)
| SApp func arg <- term =
let res = apply (evalAST env func) (evalAST env arg)
in Map.insert "__result" res env

View File

@ -39,29 +39,35 @@ lexerTests = testGroup "Lexer Tests"
let input = "x a b = a"
expect = Right [LIdentifier "x", LIdentifier "a", LIdentifier "b", LAssign, LIdentifier "a"]
runParser tricuLexer "" input @?= expect
, testCase "Lex Tree Calculus terms" $ do
let input = "t t t"
expect = Right [LKeywordT, LKeywordT, LKeywordT]
runParser tricuLexer "" input @?= expect
, testCase "Lex escaped characters in strings" $ do
let input = "\"hello\\nworld\""
expect = Right [LStringLiteral "hello\\nworld"]
runParser tricuLexer "" input @?= expect
, testCase "Lex mixed literals" $ do
let input = "t \"string\" 42"
expect = Right [LKeywordT, LStringLiteral "string", LIntegerLiteral 42]
runParser tricuLexer "" input @?= expect
, testCase "Lex invalid token" $ do
let input = "&invalid"
case runParser tricuLexer "" input of
Left _ -> return ()
Right _ -> assertFailure "Expected lexer to fail on invalid token"
, testCase "Drop trailing whitespace in definitions" $ do
let input = "x = 5 "
expect = [LIdentifier "x",LAssign,LIntegerLiteral 5]
case (runParser tricuLexer "" input) of
Left _ -> assertFailure "Failed to lex input"
Right i -> i @?= expect
, testCase "Error when using invalid characters in identifiers" $ do
case (runParser tricuLexer "" "__result = 5") of
Left _ -> return ()
@ -75,76 +81,94 @@ parserTests = testGroup "Parser Tests"
case parseSingleExpr tokens of
Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of T"
, testCase "Parse function definitions" $ do
let input = "x = (\\a b c : a)"
expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
parseSingle input @?= expect
, testCase "Parse nested Tree Calculus terms" $ do
let input = "t (t t) t"
expect = SApp (SApp TLeaf (SApp TLeaf TLeaf)) TLeaf
parseSingle input @?= expect
, testCase "Parse sequential Tree Calculus terms" $ do
let input = "t t t"
expect = SApp (SApp TLeaf TLeaf) TLeaf
parseSingle input @?= expect
, testCase "Parse mixed list literals" $ do
let input = "[t (\"hello\") t]"
expect = SList [TLeaf, SStr "hello", TLeaf]
parseSingle input @?= expect
, testCase "Parse function with applications" $ do
let input = "f = (\\x : t x)"
expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
parseSingle input @?= expect
, testCase "Parse nested lists" $ do
let input = "[t [(t t)]]"
expect = SList [TLeaf,SList [SApp TLeaf TLeaf]]
parseSingle input @?= expect
, testCase "Parse complex parentheses" $ do
let input = "t (t t (t t))"
expect = SApp TLeaf (SApp (SApp TLeaf TLeaf) (SApp TLeaf TLeaf))
parseSingle input @?= expect
, testCase "Parse empty list" $ do
let input = "[]"
expect = SList []
parseSingle input @?= expect
, testCase "Parse multiple nested lists" $ do
let input = "[[t t] [t (t t)]]"
expect = SList [SList [TLeaf,TLeaf],SList [TLeaf,SApp TLeaf TLeaf]]
parseSingle input @?= expect
, testCase "Parse whitespace variance" $ do
let input1 = "[t t]"
let input2 = "[ t t ]"
expect = SList [TLeaf, TLeaf]
parseSingle input1 @?= expect
parseSingle input2 @?= expect
, testCase "Parse string in list" $ do
let input = "[(\"hello\")]"
expect = SList [SStr "hello"]
parseSingle input @?= expect
, testCase "Parse parentheses inside list" $ do
let input = "[t (t t)]"
expect = SList [TLeaf,SApp TLeaf TLeaf]
parseSingle input @?= expect
, testCase "Parse nested parentheses in function body" $ do
let input = "f = (\\x : t (t (t t)))"
expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
parseSingle input @?= expect
, testCase "Parse lambda abstractions" $ do
let input = "(\\a : a)"
expect = (SLambda ["a"] (SVar "a"))
parseSingle input @?= expect
, testCase "Parse multiple arguments to lambda abstractions" $ do
let input = "x = (\\a b : a)"
expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
parseSingle input @?= expect
, testCase "Grouping T terms with parentheses in function application" $ do
let input = "x = (\\a : a)\nx (t)"
expect = [SFunc "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
parseTricu input @?= expect
, testCase "Comments 1" $ do
let input = "(t) (t) -- (t)"
expect = [SApp TLeaf TLeaf]
parseTricu input @?= expect
, testCase "Comments 2" $ do
let input = "(t) -- (t) -- (t)"
expect = [TLeaf]
@ -157,48 +181,59 @@ evaluationTests = testGroup "Evaluation Tests"
let input = "t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Leaf
, testCase "Evaluate single Stem" $ do
let input = "t t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Stem Leaf
, testCase "Evaluate single Fork" $ do
let input = "t t t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Fork Leaf Leaf
, testCase "Evaluate nested Fork and Stem" $ do
let input = "t (t t) t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Fork (Stem Leaf) Leaf
, testCase "Evaluate `not` function" $ do
let input = "t (t (t t) (t t t)) t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?=
Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
, testCase "Environment updates with definitions" $ do
let input = "x = t\ny = x"
env = evalTricu Map.empty (parseTricu input)
Map.lookup "x" env @?= Just Leaf
Map.lookup "y" env @?= Just Leaf
, testCase "Variable substitution" $ do
let input = "x = t t\ny = t x\ny"
env = evalTricu Map.empty (parseTricu input)
(result env) @?= Stem (Stem Leaf)
, testCase "Multiline input evaluation" $ do
let input = "x = t\ny = t t\nx"
env = evalTricu Map.empty (parseTricu input)
(result env) @?= Leaf
, testCase "Evaluate string literal" $ do
let input = "\"hello\""
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofString "hello"
, testCase "Evaluate list literal" $ do
let input = "[t (t t)]"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofList [Leaf, Stem Leaf]
, testCase "Evaluate empty list" $ do
let input = "[]"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofList []
, testCase "Evaluate variable dependency chain" $ do
let input = "x = t (t t)\n \
\ y = x\n \
@ -207,10 +242,17 @@ evaluationTests = testGroup "Evaluation Tests"
\ variablewithamuchlongername"
env = evalTricu Map.empty (parseTricu input)
(result env) @?= (Stem (Stem Leaf))
, testCase "Evaluate variable shadowing" $ do
let input = "x = t t\nx = t\nx"
env = evalTricu Map.empty (parseTricu input)
(result env) @?= Leaf
result <- try (evaluate (runTricu input)) :: IO (Either SomeException String)
case result of
Left _ -> return ()
Right _ -> assertFailure "Expected evaluation error"
, testCase "Apply identity to Boolean Not" $ do
let not = "(t (t (t t) (t t t)) t)"
let input = "x = (\\a : a)\nx " ++ not
@ -223,57 +265,76 @@ lambdaEvalTests = testGroup "Lambda Evaluation Tests"
[ testCase "Lambda Identity Function" $ do
let input = "id = (\\x : x)\nid t"
runTricu input @?= "Leaf"
, testCase "Lambda Constant Function (K combinator)" $ do
let input = "k = (\\x y : x)\nk t (t t)"
runTricu input @?= "Leaf"
, testCase "Lambda Application with Variable" $ do
let input = "id = (\\x : x)\nval = t t\nid val"
runTricu input @?= "Stem Leaf"
, testCase "Lambda Application with Multiple Arguments" $ do
let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)"
runTricu input @?= "Leaf"
, testCase "Nested Lambda Application" $ do
let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t"
runTricu input @?= "Leaf"
, testCase "Lambda with a complex body" $ do
let input = "f = (\\x : t (t x))\nf t"
runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda returning a function" $ do
let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)"
runTricu input @?= "Leaf"
, testCase "Lambda with Shadowing" $ do
let input = "f = (\\x : (\\x : x))\nf t (t t)"
runTricu input @?= "Stem Leaf"
, testCase "Lambda returning another lambda" $ do
let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)"
runTricu input @?= "Leaf"
, testCase "Lambda with free variables" $ do
let input = "y = t t\nf = (\\x : y)\nf t"
runTricu input @?= "Stem Leaf"
, testCase "SKI Composition" $ do
let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)"
runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda with multiple parameters and application" $ do
let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)"
runTricu input @?= "Stem Leaf"
, testCase "Lambda with nested application in the body" $ do
let input = "f = (\\x : t (t (t x)))\nf t"
runTricu input @?= "Stem (Stem (Stem Leaf))"
, testCase "Lambda returning a function and applying it" $ do
let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)"
runTricu input @?= "Fork Leaf (Stem Leaf)"
, testCase "Lambda applying a variable" $ do
let input = "id = (\\x : x)\na = t t\nid a"
runTricu input @?= "Stem Leaf"
, testCase "Nested lambda abstractions in the same expression" $ do
let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t"
runTricu input @?= "Leaf"
, testCase "Lambda with a string literal" $ do
let input = "f = (\\x : x)\nf \"hello\""
runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
, testCase "Lambda with an integer literal" $ do
let input = "f = (\\x : x)\nf 42"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
, testCase "Lambda with a list literal" $ do
let input = "f = (\\x : x)\nf [t (t t)]"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
@ -286,106 +347,128 @@ libraryTests = testGroup "Library Tests"
let input = "k (t) (t t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "K combinator 2" $ do
library <- evaluateFile "./lib/base.tri"
let input = "k (t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "K combinator 3" $ do
library <- evaluateFile "./lib/base.tri"
let input = "k (t t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf
, testCase "S combinator" $ do
library <- evaluateFile "./lib/base.tri"
let input = "s (t) (t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf (Stem Leaf)
, testCase "SKK == I (fully expanded)" $ do
library <- evaluateFile "./lib/base.tri"
let input = "s k k"
env = evalTricu library (parseTricu input)
result env @?= Fork (Stem (Stem Leaf)) (Stem Leaf)
, testCase "I combinator" $ do
library <- evaluateFile "./lib/base.tri"
let input = "i not?"
env = evalTricu library (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) (Fork Leaf (Fork Leaf Leaf))
, testCase "Triage test Leaf" $ do
library <- evaluateFile "./lib/base.tri"
let input = "test t"
env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Leaf\""
, testCase "Triage test (Stem Leaf)" $ do
library <- evaluateFile "./lib/base.tri"
let input = "test (t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Stem\""
, testCase "Triage test (Fork Leaf Leaf)" $ do
library <- evaluateFile "./lib/base.tri"
let input = "test (t t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Fork\""
, testCase "Boolean NOT: true" $ do
library <- evaluateFile "./lib/base.tri"
let input = "not? true"
env = result $ evalTricu library (parseTricu input)
env @?= Leaf
, testCase "Boolean NOT: false" $ do
library <- evaluateFile "./lib/base.tri"
let input = "not? false"
env = result $ evalTricu library (parseTricu input)
env @?= Stem Leaf
, testCase "Boolean AND TF" $ do
library <- evaluateFile "./lib/base.tri"
let input = "and? (t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "Boolean AND FT" $ do
library <- evaluateFile "./lib/base.tri"
let input = "and? (t) (t t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "Boolean AND FF" $ do
library <- evaluateFile "./lib/base.tri"
let input = "and? (t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "Boolean AND TT" $ do
library <- evaluateFile "./lib/base.tri"
let input = "and? (t t) (t t)"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "List head" $ do
library <- evaluateFile "./lib/base.tri"
let input = "head [(t) (t t) (t t t)]"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "List tail" $ do
library <- evaluateFile "./lib/base.tri"
let input = "head (tail (tail [(t) (t t) (t t t)]))"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf
, testCase "List map" $ do
library <- evaluateFile "./lib/base.tri"
let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf
, testCase "Empty list check" $ do
library <- evaluateFile "./lib/base.tri"
let input = "emptyList? []"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "Non-empty list check" $ do
library <- evaluateFile "./lib/base.tri"
let input = "not? (emptyList? [(1) (2) (3)])"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "Concatenate strings" $ do
library <- evaluateFile "./lib/base.tri"
let input = "lconcat \"Hello, \" \"world!\""
env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Hello, world!\""
, testCase "Verifying Equality" $ do
library <- evaluateFile "./lib/base.tri"
let input = "equal? (t t t) (t t t)"
@ -398,12 +481,15 @@ fileEvaluationTests = testGroup "Evaluation tests"
[ testCase "Forks" $ do
res <- liftIO $ evaluateFileResult "./test/fork.tri"
res @?= Fork Leaf Leaf
, testCase "File ends with comment" $ do
res <- liftIO $ evaluateFileResult "./test/comments-1.tri"
res @?= Fork (Stem Leaf) Leaf
, testCase "Mapping and Equality" $ do
res <- liftIO $ evaluateFileResult "./test/map.tri"
res @?= Stem Leaf
, testCase "Eval and decoding string" $ do
library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./test/string.tri"