Compare commits

...

No commits in common. "0.11.0" and "main" have entirely different histories.
0.11.0 ... main

46 changed files with 1187 additions and 540 deletions

@ -62,4 +62,4 @@ jobs:
./tricu ./tricu
token: '${{ secrets.RELEASE_TOKEN }}' token: '${{ secrets.RELEASE_TOKEN }}'
body: '${{ gitea.event.head_commit.message }}' body: '${{ gitea.event.head_commit.message }}'
pre_release: true prerelease: true

1
.gitignore vendored

@ -9,3 +9,4 @@
WD WD
bin/ bin/
dist* dist*
.tricu_history

@ -2,34 +2,36 @@
## Introduction ## Introduction
tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. It is fundamentally based on the application of [Tree Calculus](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf) terms, but minimal syntax sugar is included to provide a useful programming tool. tricu is under active development and you can expect breaking changes with nearly every commit. tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. It is fundamentally based on the application of [Tree Calculus](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf) terms, but minimal syntax sugar is included to provide a useful programming tool.
*tricu is under active development and you should expect breaking changes with every commit.*
tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`. tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`.
## Features ## Features
- Tree Calculus operator: `t` - Tree Calculus operator: `t`
- Assignments: `x = t t` - Immutable definitions: `x = t t`
- Lambda abstraction syntax: `id = (\a : a)` - Lambda abstraction: `id = (a : a)`
- List, Number, and String literals: `[(2) ("Hello")]` - List, Number, and String literals: `[(2) ("Hello")]`
- Function application: `not (not false)` - Function application: `not (not false)`
- Higher order/first-class functions: `map (\a : lconcat a "!") [("Hello")]` - Higher order/first-class functions: `map (a : append a "!") [("Hello")]`
- Intensionality blurs the distinction between functions and data (see REPL examples) - Intensionality blurs the distinction between functions and data (see REPL examples)
- Immutability - Simple module system for code organization
## REPL examples ## REPL examples
``` ```
tricu < -- Anything after `--` on a single line is a comment tricu < -- Anything after `--` on a single line is a comment
tricu < id = (\a : a) -- Lambda abstraction is eliminated to tree calculus terms tricu < id = (a : a) -- Lambda abstraction is eliminated to tree calculus terms
tricu < head (map (\i : lconcat i " world!") [("Hello, ")]) tricu < head (map (i : append i " world!") [("Hello, ")])
tricu > "Hello, world!" tricu > "Hello, world!"
tricu < id (head (map (\i : lconcat i " world!") [("Hello, ")])) tricu < id (head (map (i : append i " world!") [("Hello, ")]))
tricu > "Hello, world!" tricu > "Hello, world!"
tricu < -- Intensionality! We can inspect the structure of a function or data. tricu < -- Intensionality! We can inspect the structure of a function or data.
tricu < triage = (\a b c : t (t a b) c) tricu < triage = (a b c : t (t a b) c)
tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork") tricu < test = triage "Leaf" (z : "Stem") (a b : "Fork")
tricu < test (t t) tricu < test (t t)
tricu > "Stem" tricu > "Stem"
tricu < -- We can even convert a term back to source code (/demos/toSource.tri) tricu < -- We can even convert a term back to source code (/demos/toSource.tri)
@ -38,13 +40,21 @@ tricu > "(t (t (t t) (t t t)) (t t (t t t)))"
tricu < -- or calculate its size (/demos/size.tri) tricu < -- or calculate its size (/demos/size.tri)
tricu < size not? tricu < size not?
tricu > 12 tricu > 12
tricu < -- REPL Commands:
tricu < !definitions -- Lists all available definitions
tricu < !output -- Change output format (Tree, FSL, AST, etc.)
tricu < !import -- Import definitions from a file
tricu < !exit -- Exit the REPL
tricu < !clear -- ANSI screen clear
tricu < !save -- Save all REPL definitions to a file that you can !import
tricu < !reset -- Clear all REPL definitions
tricu < !version -- Print tricu version
``` ```
## Installation and Use ## Installation and Use
[Releases are available for Linux.](https://git.eversole.co/James/tricu/releases) You can easily build and run this project using [Nix](https://nixos.org/download/).
Or you can easily build and/or run this project using [Nix](https://nixos.org/download/).
- Quick Start (REPL): - Quick Start (REPL):
- `nix run git+https://git.eversole.co/James/tricu` - `nix run git+https://git.eversole.co/James/tricu`
@ -81,6 +91,12 @@ tricu decode [OPTIONS]
Defaults to stdin. Defaults to stdin.
``` ```
## Collaborating
I am happy to accept issue reports, pull requests, or questions about tricu [via email](mailto:james@eversole.co).
If you want to collaborate but don't want to email back-and-forth, please reach out via email once to let me know and I will provision a git.eversole.co account for you.
## Acknowledgements ## Acknowledgements
Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog). Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog).

@ -1,3 +1,6 @@
!import "../lib/base.tri" !Local
!import "../lib/list.tri" !Local
main = lambdaEqualsTC main = lambdaEqualsTC
-- We represent `false` with a Leaf and `true` with a Stem Leaf -- We represent `false` with a Leaf and `true` with a Stem Leaf
@ -8,20 +11,17 @@ demo_true = t t
not_TC? = t (t (t t) (t t t)) (t t (t t t)) not_TC? = t (t (t t) (t t t)) (t t (t t t))
-- /demos/toSource.tri contains an explanation of `triage` -- /demos/toSource.tri contains an explanation of `triage`
demo_triage = \a b c : t (t a b) c demo_triage = a b c : t (t a b) c
demo_matchBool = (\ot of : demo_triage demo_matchBool = a b : demo_triage b (_ : a) (_ _ : a)
of
(\_ : ot)
(\_ _ : ot)
)
-- Lambda representation of the Boolean `not` function -- Lambda representation of the Boolean `not` function
not_Lambda? = demo_matchBool demo_false demo_true not_Lambda? = demo_matchBool demo_false demo_true
-- Since tricu eliminates Lambda terms to SKI combinators, the tree form of many -- As tricu eliminates Lambda terms to SKI combinators, the tree form of many
-- functions defined via Lambda terms are larger than the most efficient TC -- functions defined via Lambda terms are larger than the most efficient TC
-- representation. Between different languages that evaluate to tree calculus -- representation possible. Between different languages that evaluate to tree
-- terms, the exact implementation of Lambda elimination may differ and lead -- calculus terms, the exact implementation of Lambda elimination may differ
-- to different tree representations even if they share extensional behavior. -- and lead to different trees even if they share extensional behavior.
-- Let's see if these are the same: -- Let's see if these are the same:
lambdaEqualsTC = equal? not_TC? not_Lambda? lambdaEqualsTC = equal? not_TC? not_Lambda?

@ -1,3 +1,6 @@
!import "../lib/base.tri" Lib
!import "../lib/list.tri" !Local
main = exampleTwo main = exampleTwo
-- Level Order Traversal of a labelled binary tree -- Level Order Traversal of a labelled binary tree
-- Objective: Print each "level" of the tree on a separate line -- Objective: Print each "level" of the tree on a separate line
@ -15,47 +18,47 @@ main = exampleTwo
-- / / \ -- / / \
-- 4 5 6 -- 4 5 6
label = \node : head node label = node : head node
left = (\node : if (emptyList? node) left = node : (if (emptyList? node)
[] []
(if (emptyList? (tail node)) (if (emptyList? (tail node))
[] []
(head (tail node)))) (head (tail node))))
right = (\node : if (emptyList? node) right = node : (if (emptyList? node)
[] []
(if (emptyList? (tail node)) (if (emptyList? (tail node))
[] []
(if (emptyList? (tail (tail node))) (if (emptyList? (tail (tail node)))
[] []
(head (tail (tail node)))))) (head (tail (tail node))))))
processLevel = y (\self queue : if (emptyList? queue) processLevel = y (self queue : if (emptyList? queue)
[] []
(pair (map label queue) (self (filter (pair (map label queue) (self (filter
(\node : not? (emptyList? node)) (node : not? (emptyList? node))
(lconcat (map left queue) (map right queue)))))) (append (map left queue) (map right queue))))))
levelOrderTraversal_ = \a : processLevel (t a t) levelOrderTraversal_ = a : processLevel (t a t)
toLineString = y (\self levels : if (emptyList? levels) toLineString = y (self levels : if (emptyList? levels)
"" ""
(lconcat (append
(lconcat (map (\x : lconcat x " ") (head levels)) "") (append (map (x : append x " ") (head levels)) "")
(if (emptyList? (tail levels)) "" (lconcat (t (t 10 t) t) (self (tail levels)))))) (if (emptyList? (tail levels)) "" (append (t (t 10 t) t) (self (tail levels))))))
levelOrderToString = \s : toLineString (levelOrderTraversal_ s) levelOrderToString = s : toLineString (levelOrderTraversal_ s)
flatten = foldl (\acc x : lconcat acc x) "" flatten = foldl (acc x : append acc x) ""
levelOrderTraversal = \s : lconcat (t 10 t) (flatten (levelOrderToString s)) levelOrderTraversal = s : append (t 10 t) (flatten (levelOrderToString s))
exampleOne = levelOrderTraversal [("1") exampleOne = levelOrderTraversal [("1")
[("2") [("4") t t] t] [("2") [("4") t t] t]
[("3") [("5") t t] [("6") t t]]] [("3") [("5") t t] [("6") t t]]]
exampleTwo = levelOrderTraversal [("1") exampleTwo = levelOrderTraversal [("1")
[("2") [("4") [("8") t t] [("9") t t]] [("2") [("4") [("8") t t] [("9") t t]]
[("6") [("10") t t] [("12") t t]]] [("6") [("10") t t] [("12") t t]]]
[("3") [("5") [("11") t t] t] [("7") t t]]] [("3") [("5") [("11") t t] t] [("7") t t]]]

37
demos/patternMatching.tri Normal file

@ -0,0 +1,37 @@
!import "../lib/patterns.tri" !Local
-- We can do conditional pattern matching by providing a list of lists, where
-- each sublist contains a boolean expression and a function to return if said
-- boolean expression evaluates to true.
value = 42
main = match value [[(equal? "Hello") (_ : ", world!")] [(equal? 42) (_ : "The answer.")]]
-- < main
-- > "The answer."
matchExample = (x : match x
[[(equal? 1) (_ : "one")]
[(equal? 2) (_ : "two")]
[(equal? 3) (_ : "three")]
[(equal? 4) (_ : "four")]
[(equal? 5) (_ : "five")]
[(equal? 6) (_ : "six")]
[(equal? 7) (_ : "seven")]
[(equal? 8) (_ : "eight")]
[(equal? 9) (_ : "nine")]
[(equal? 10) (_ : "ten")]
[ otherwise (_ : "I ran out of fingers!")]])
-- < matchExample 3
-- > "three"
-- < matchExample 5
-- > "five"
-- < matchExample 9
-- > "nine"
-- < matchExample 11
-- > "I ran out of fingers!"
-- < matchExample "three"
-- > "I ran out of fingers!"
-- < matchExample [("hello") ("world")]
-- > "I ran out of fingers!"

@ -1,21 +1,11 @@
!import "../lib/base.tri" !Local
!import "../lib/list.tri" !Local
main = size size main = size size
compose = \f g x : f (g x) size = x : y (self x : compose succ (triage
id
succ = y (\self : self
triage (x y : compose (self x) (self y))
1 x)
t ) x 0
(triage
(t (t t))
(\_ tail : t t (self tail))
t))
size = (\x :
(y (\self x :
compose succ
(triage
(\x : x)
self
(\x y : compose (self x) (self y))
x)) x 0))

@ -1,3 +1,6 @@
!import "../lib/base.tri" !Local
!import "../lib/list.tri" !Local
main = toSource not? main = toSource not?
-- Thanks to intensionality, we can inspect the structure of a given value -- Thanks to intensionality, we can inspect the structure of a given value
-- even if it's a function. This includes lambdas which are eliminated to -- even if it's a function. This includes lambdas which are eliminated to
@ -15,25 +18,25 @@ main = toSource not?
sourceLeaf = t (head "t") sourceLeaf = t (head "t")
-- Stem case -- Stem case
sourceStem = (\convert : (\a rest : sourceStem = convert : (a rest :
t (head "(") -- Start with a left parenthesis "(". t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t" (t (head "t") -- Add a "t"
(t (head " ") -- Add a space. (t (head " ") -- Add a space.
(convert a -- Recursively convert the argument. (convert a -- Recursively convert the argument.
(t (head ")") rest)))))) -- Close with ")" and append the rest. (t (head ")") rest))))) -- Close with ")" and append the rest.
-- Fork case -- Fork case
sourceFork = (\convert : (\a b rest : sourceFork = convert : (a b rest :
t (head "(") -- Start with a left parenthesis "(". t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t" (t (head "t") -- Add a "t"
(t (head " ") -- Add a space. (t (head " ") -- Add a space.
(convert a -- Recursively convert the first arg. (convert a -- Recursively convert the first arg.
(t (head " ") -- Add another space. (t (head " ") -- Add another space.
(convert b -- Recursively convert the second arg. (convert b -- Recursively convert the second arg.
(t (head ")") rest)))))))) -- Close with ")" and append the rest. (t (head ")") rest))))))) -- Close with ")" and append the rest.
-- Wrapper around triage -- Wrapper around triage
toSource_ = y (\self arg : toSource_ = y (self arg :
triage triage
sourceLeaf -- `triage` "a" case, Leaf sourceLeaf -- `triage` "a" case, Leaf
(sourceStem self) -- `triage` "b" case, Stem (sourceStem self) -- `triage` "b" case, Stem
@ -41,7 +44,7 @@ toSource_ = y (\self arg :
arg) -- The term to be inspected arg) -- The term to be inspected
-- toSource takes a single TC term and returns a String -- toSource takes a single TC term and returns a String
toSource = \v : toSource_ v "" toSource = v : toSource_ v ""
exampleOne = toSource true -- OUT: "(t t)" exampleOne = toSource true -- OUT: "(t t)"
exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))" exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"

@ -34,6 +34,7 @@
devShells.default = pkgs.mkShell { devShells.default = pkgs.mkShell {
buildInputs = with pkgs; [ buildInputs = with pkgs; [
haskellPackages.cabal-install haskellPackages.cabal-install
haskellPackages.ghc-events
haskellPackages.ghcid haskellPackages.ghcid
customGHC customGHC
upx upx

@ -1,83 +1,74 @@
false = t false = t
_ = t _ = t
true = t t true = t t
k = t t id = a : a
i = t (t k) t const = a b : a
s = t (t (k t)) t
m = s i i
b = s (k s) k
c = s (s (k s) (s (k k) s)) (k k)
id = \a : a
pair = t pair = t
if = \cond then else : t (t else (t t then)) t cond if = cond then else : t (t else (t t then)) t cond
y = ((\mut wait fun : wait mut (\x : fun (wait mut x))) y = ((mut wait fun : wait mut (x : fun (wait mut x)))
(\x : x x) (x : x x)
(\a0 a1 a2 : t (t a0) (t t a2) a1)) (a0 a1 a2 : t (t a0) (t t a2) a1))
triage = \leaf stem fork : t (t leaf stem) fork compose = f g x : f (g x)
test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork")
matchBool = (\ot of : triage triage = leaf stem fork : t (t leaf stem) fork
test = triage "Leaf" (_ : "Stem") (_ _ : "Fork")
matchBool = (ot of : triage
of of
(\_ : ot) (_ : ot)
(\_ _ : ot) (_ _ : ot)
) )
matchList = \a b : triage a _ b
matchPair = \a : triage _ _ a
not? = matchBool false true
and? = matchBool id (\_ : false)
emptyList? = matchList true (\_ _ : false)
head = matchList t (\head _ : head)
tail = matchList t (\_ tail : tail)
lconcat = y (\self : matchList
(\k : k)
(\h r k : pair h (self r k)))
lAnd = (triage lAnd = (triage
(\_ : false) (_ : false)
(\_ x : x) (_ x : x)
(\_ _ x : x)) (_ _ x : x))
lOr = (triage lOr = (triage
(\x : x) (x : x)
(\_ _ : true) (_ _ : true)
(\_ _ _ : true)) (_ _ _ : true))
map_ = y (\self : matchPair = a : triage _ _ a
matchList
(\_ : t)
(\head tail f : pair (f head) (self tail f)))
map = \f l : map_ l f
equal? = y (\self : triage not? = matchBool false true
and? = matchBool id (_ : false)
or? = (x z :
matchBool
(matchBool true true z)
(matchBool true false z)
x)
xor? = (x z :
matchBool
(matchBool false true z)
(matchBool true false z)
x)
equal? = y (self : triage
(triage (triage
true true
(\_ : false) (_ : false)
(\_ _ : false)) (_ _ : false))
(\ax : (ax :
triage triage
false false
(self ax) (self ax)
(\_ _ : false)) (_ _ : false))
(\ax ay : (ax ay :
triage triage
false false
(\_ : false) (_ : false)
(\bx by : lAnd (self ax bx) (self ay by)))) (bx by : lAnd (self ax bx) (self ay by))))
filter_ = y (\self : matchList succ = y (self :
(\_ : t) triage
(\head tail f : matchBool (t head) i (f head) (self tail f))) 1
filter = \f l : filter_ l f t
(triage
foldl_ = y (\self f l x : matchList (\acc : acc) (\head tail acc : self f tail (f acc head)) l x) (t (t t))
foldl = \f x l : foldl_ f l x (_ tail : t t (self tail))
t))
foldr_ = y (\self x f l : matchList x (\head tail : f (self x f tail) head) l)
foldr = \f x l : foldr_ x f l

70
lib/list.tri Normal file

@ -0,0 +1,70 @@
!import "base.tri" !Local
_ = t
matchList = a b : triage a _ b
emptyList? = matchList true (_ _ : false)
head = matchList t (head _ : head)
tail = matchList t (_ tail : tail)
append = y (self : matchList
(k : k)
(h r k : pair h (self r k)))
lExist? = y (self x : matchList
false
(h z : or? (equal? x h) (self x z)))
map_ = y (self :
matchList
(_ : t)
(head tail f : pair (f head) (self tail f)))
map = f l : map_ l f
filter_ = y (self : matchList
(_ : t)
(head tail f : matchBool (t head) id (f head) (self tail f)))
filter = f l : filter_ l f
foldl_ = y (self f l x : matchList (acc : acc) (head tail acc : self f tail (f acc head)) l x)
foldl = f x l : foldl_ f l x
foldr_ = y (self x f l : matchList x (head tail : f (self x f tail) head) l)
foldr = f x l : foldr_ x f l
length = y (self : matchList
0
(_ tail : succ (self tail)))
reverse = y (self : matchList
t
(head tail : append (self tail) (pair head t)))
snoc = y (self x : matchList
(pair x t)
(h z : pair h (self x z)))
count = y (self x : matchList
0
(h z : matchBool
(succ (self x z))
(self x z)
(equal? x h)))
last = y (self : matchList
t
(hd tl : matchBool
hd
(self tl)
(emptyList? tl)))
all? = y (self pred : matchList
true
(h z : and? (pred h) (self pred z)))
any? = y (self pred : matchList
false
(h z : or? (pred h) (self pred z)))
intersect = xs ys : filter (x : lExist? x ys) xs

24
lib/patterns.tri Normal file

@ -0,0 +1,24 @@
!import "base.tri" !Local
!import "list.tri" List
match_ = y (self value patterns :
triage
t
(_ : t)
(pattern rest :
triage
t
(_ : t)
(test result :
if (test value)
(result value)
(self value rest))
pattern)
patterns)
match = (value patterns :
match_ value (List.map (sublist :
pair (List.head sublist) (List.head (List.tail sublist)))
patterns))
otherwise = const (t t)

@ -3,33 +3,33 @@ module Eval where
import Parser import Parser
import Research import Research
import Data.List (partition) import Data.List (partition, (\\))
import Data.Map (Map) import Data.Map (Map)
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Set as Set import qualified Data.Set as Set
evalSingle :: Env -> TricuAST -> Env evalSingle :: Env -> TricuAST -> Env
evalSingle env term evalSingle env term
| SDef name [] body <- term = | SDef name [] body <- term
if = case Map.lookup name env of
| Map.member name env -> Just existingValue
errorWithoutStackTrace $ | existingValue == evalAST env body -> env
"Error: Identifier '" ++ name ++ "' is already defined." | otherwise -> errorWithoutStackTrace $
| otherwise -> "Unable to rebind immutable identifier: " ++ name
let res = evalAST env body Nothing ->
in Map.insert "__result" res (Map.insert name res env) let res = evalAST env body
| SApp func arg <- term = in Map.insert "!result" res (Map.insert name res env)
let res = apply (evalAST env func) (evalAST env arg) | SApp func arg <- term
in Map.insert "__result" res env = let res = apply (evalAST env func) (evalAST env arg)
| SVar name <- term = in Map.insert "!result" res env
case Map.lookup name env of | SVar name <- term
Just v -> = case Map.lookup name env of
Map.insert "__result" v env Just v -> Map.insert "!result" v env
Nothing -> Nothing ->
errorWithoutStackTrace $ "Variable `" ++ name ++ "` not defined\n\ errorWithoutStackTrace $ "Variable `" ++ name ++ "` not defined\n\
\This error should never occur here. Please report this as an issue." \This error should never occur here. Please report this as an issue."
| otherwise = | otherwise
Map.insert "__result" (evalAST env term) env = Map.insert "!result" (evalAST env term) env
evalTricu :: Env -> [TricuAST] -> Env evalTricu :: Env -> [TricuAST] -> Env
evalTricu env x = go env (reorderDefs env x) evalTricu env x = go env (reorderDefs env x)
@ -37,7 +37,7 @@ evalTricu env x = go env (reorderDefs env x)
go env [] = env go env [] = env
go env [x] = go env [x] =
let updatedEnv = evalSingle env x let updatedEnv = evalSingle env x
in Map.insert "__result" (result updatedEnv) updatedEnv in Map.insert "!result" (result updatedEnv) updatedEnv
go env (x:xs) = go env (x:xs) =
evalTricu (evalSingle env x) xs evalTricu (evalSingle env x) xs
@ -62,26 +62,39 @@ evalAST env term
elimLambda :: TricuAST -> TricuAST elimLambda :: TricuAST -> TricuAST
elimLambda = go elimLambda = go
where where
-- η-reduction go term
go (SLambda [v] (SApp f (SVar x))) | etaReduction term = elimLambda $ etaReduceResult term
| v == x && not (isFree v f) = elimLambda f | triagePattern term = _TRI
-- Triage optimization | composePattern term = _B
go (SLambda [a] (SLambda [b] (SLambda [c] body))) | lambdaList term = elimLambda $ lambdaListResult term
| body == triageBody = _TRIAGE | nestedLambda term = nestedLambdaResult term
where | application term = applicationResult term
triageBody = | otherwise = term
(SApp (SApp TLeaf (SApp (SApp TLeaf (SVar a)) (SVar b))) (SVar c))
-- Composition optimization etaReduction (SLambda [v] (SApp f (SVar x))) = v == x && not (isFree v f)
go (SLambda [f] (SLambda [g] (SLambda [x] body))) etaReduction _ = False
| body == composeBody = _COMPOSE etaReduceResult (SLambda [_] (SApp f _)) = f
where
composeBody = SApp (SVar f) (SApp (SVar g) (SVar x)) triagePattern (SLambda [a] (SLambda [b] (SLambda [c] body))) = body == triageBody a b c
-- General elimination triagePattern _ = False
go (SLambda (v:vs) body)
| null vs = toSKI v (elimLambda body) composePattern (SLambda [f] (SLambda [g] (SLambda [x] body))) = body == composeBody f g x
| otherwise = elimLambda (SLambda [v] (SLambda vs body)) composePattern _ = False
go (SApp f g) = SApp (elimLambda f) (elimLambda g)
go x = x lambdaList (SLambda [_] (SList _)) = True
lambdaList _ = False
lambdaListResult (SLambda [v] (SList xs)) = SLambda [v] (foldr wrapTLeaf TLeaf xs)
wrapTLeaf m r = SApp (SApp TLeaf m) r
nestedLambda (SLambda (_:_) _) = True
nestedLambda _ = False
nestedLambdaResult (SLambda (v:vs) body)
| null vs = toSKI v (elimLambda body)
| otherwise = elimLambda (SLambda [v] (SLambda vs body))
application (SApp _ _) = True
application _ = False
applicationResult (SApp f g) = SApp (elimLambda f) (elimLambda g)
toSKI x (SVar y) toSKI x (SVar y)
| x == y = _I | x == y = _I
@ -89,30 +102,39 @@ elimLambda = go
toSKI x t@(SApp n u) toSKI x t@(SApp n u)
| not (isFree x t) = SApp _K t | not (isFree x t) = SApp _K t
| otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u) | otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u)
toSKI x (SList xs)
| not (isFree x (SList xs)) = SApp _K (SList xs)
| otherwise = SList (map (toSKI x) xs)
toSKI x t toSKI x t
| not (isFree x t) = SApp _K t | not (isFree x t) = SApp _K t
| otherwise = errorWithoutStackTrace "Unhandled toSKI conversion" | otherwise = errorWithoutStackTrace "Unhandled toSKI conversion"
_S = parseSingle "t (t (t t t)) t" -- Combinators and special forms
_K = parseSingle "t t" _S = parseSingle "t (t (t t t)) t"
_I = parseSingle "t (t (t t)) t" _K = parseSingle "t t"
_TRIAGE = parseSingle "t (t (t t (t (t (t t t))))) t" _I = parseSingle "t (t (t t)) t"
_COMPOSE = parseSingle "t (t (t t (t (t (t t t)) t))) (t t)" _B = parseSingle "t (t (t t (t (t (t t t)) t))) (t t)"
_TRI = parseSingle "t (t (t t (t (t (t t t))))) t"
-- Pattern bodies
triageBody a b c = SApp (SApp TLeaf (SApp (SApp TLeaf (SVar a)) (SVar b))) (SVar c)
composeBody f g x = SApp (SVar f) (SApp (SVar g) (SVar x))
isFree :: String -> TricuAST -> Bool isFree :: String -> TricuAST -> Bool
isFree x = Set.member x . freeVars isFree x = Set.member x . freeVars
freeVars :: TricuAST -> Set.Set String freeVars :: TricuAST -> Set.Set String
freeVars (SVar v ) = Set.singleton v freeVars (SVar v ) = Set.singleton v
freeVars (SList s ) = foldMap freeVars s
freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v
freeVars (SApp f a ) = freeVars f <> freeVars a
freeVars (TFork l r ) = freeVars l <> freeVars r
freeVars (SDef _ _ b) = freeVars b
freeVars (TStem t ) = freeVars t
freeVars (SInt _ ) = Set.empty freeVars (SInt _ ) = Set.empty
freeVars (SStr _ ) = Set.empty freeVars (SStr _ ) = Set.empty
freeVars (SList s ) = foldMap freeVars s freeVars TLeaf = Set.empty
freeVars (SApp f a ) = freeVars f <> freeVars a freeVars _ = Set.empty
freeVars (TLeaf ) = Set.empty
freeVars (SDef _ _ b) = freeVars b
freeVars (TStem t ) = freeVars t
freeVars (TFork l r ) = freeVars l <> freeVars r
freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v
reorderDefs :: Env -> [TricuAST] -> [TricuAST] reorderDefs :: Env -> [TricuAST] -> [TricuAST]
reorderDefs env defs reorderDefs env defs
@ -122,51 +144,60 @@ reorderDefs env defs
| otherwise = orderedDefs ++ others | otherwise = orderedDefs ++ others
where where
(defsOnly, others) = partition isDef defs (defsOnly, others) = partition isDef defs
graph = buildDepGraph defsOnly defNames = [ name | SDef name _ _ <- defsOnly ]
sortedDefs = sortDeps graph
defMap = Map.fromList [(name, def) | def@(SDef name _ _) <- defsOnly]
orderedDefs = map (\name -> defMap Map.! name) sortedDefs
topDefNames = Set.fromList (Map.keys defMap)
envNames = Set.fromList (Map.keys env)
freeVarsDefs = foldMap (\(SDef _ _ body) -> freeVars body) defsOnly
freeVarsOthers = foldMap freeVars others
allFreeVars = freeVarsDefs <> freeVarsOthers
validNames = topDefNames `Set.union` envNames
missingDeps = Set.toList (allFreeVars `Set.difference` validNames)
isDef (SDef _ _ _) = True defsWithFreeVars = [(def, freeVars body) | def@(SDef _ _ body) <- defsOnly]
isDef _ = False
graph = buildDepGraph defsOnly
sortedDefs = sortDeps graph
defMap = Map.fromList [(name, def) | def@(SDef name _ _) <- defsOnly]
orderedDefs = map (defMap Map.!) sortedDefs
freeVarsDefs = foldMap snd defsWithFreeVars
freeVarsOthers = foldMap freeVars others
allFreeVars = freeVarsDefs <> freeVarsOthers
validNames = Set.fromList defNames `Set.union` Set.fromList (Map.keys env)
missingDeps = Set.toList (allFreeVars `Set.difference` validNames)
isDef SDef {} = True
isDef _ = False
buildDepGraph :: [TricuAST] -> Map.Map String (Set.Set String) buildDepGraph :: [TricuAST] -> Map.Map String (Set.Set String)
buildDepGraph topDefs buildDepGraph topDefs
| not (null duplicateNames) = | not (null conflictingDefs) =
errorWithoutStackTrace $ errorWithoutStackTrace $
"Duplicate definitions detected: " ++ show duplicateNames "Conflicting definitions detected: " ++ show conflictingDefs
| otherwise = | otherwise =
Map.fromList Map.fromList
[ (name, depends topDefs (SDef name [] body)) [ (name, depends topDefs (SDef name [] body))
| SDef name _ body <- topDefs] | SDef name _ body <- topDefs]
where where
names = [name | SDef name _ _ <- topDefs] defsMap = Map.fromListWith (++)
duplicateNames = [(name, [(name, body)]) | SDef name _ body <- topDefs]
[ name | (name, count) <- Map.toList (countOccurrences names) , count > 1]
countOccurrences = foldr (\x -> Map.insertWith (+) x 1) Map.empty conflictingDefs =
[ name
| (name, defs) <- Map.toList defsMap
, let bodies = map snd defs
, not $ all (== head bodies) (tail bodies)
]
sortDeps :: Map.Map String (Set.Set String) -> [String] sortDeps :: Map.Map String (Set.Set String) -> [String]
sortDeps graph = go [] (Map.keys graph) sortDeps graph = go [] Set.empty (Map.keys graph)
where where
go sorted [] = sorted go sorted sortedSet [] = sorted
go sorted remaining go sorted sortedSet remaining =
| null ready = let ready = [ name | name <- remaining
errorWithoutStackTrace , let deps = Map.findWithDefault Set.empty name graph
"ERROR: Top-level cyclic dependency detected and prohibited\n\ , Set.isSubsetOf deps sortedSet ]
\RESOLVE: Use nested lambdas" notReady = remaining \\ ready
| otherwise = go (sorted ++ ready) notReady in if null ready
where then errorWithoutStackTrace
ready = [ name | name <- remaining "ERROR: Cyclic dependency detected and prohibited.\n\
, all (`elem` sorted) (Set.toList (graph Map.! name))] \RESOLVE: Use nested lambdas."
notReady = else go (sorted ++ ready)
[ name | name <- remaining , name `notElem` ready] (Set.union sortedSet (Set.fromList ready))
notReady
depends :: [TricuAST] -> TricuAST -> Set.Set String depends :: [TricuAST] -> TricuAST -> Set.Set String
depends topDefs (SDef _ _ body) = depends topDefs (SDef _ _ body) =
@ -176,9 +207,9 @@ depends topDefs (SDef _ _ body) =
depends _ _ = Set.empty depends _ _ = Set.empty
result :: Env -> T result :: Env -> T
result r = case Map.lookup "__result" r of result r = case Map.lookup "!result" r of
Just a -> a Just a -> a
Nothing -> errorWithoutStackTrace "No __result field found in provided env" Nothing -> errorWithoutStackTrace "No !result field found in provided env"
mainResult :: Env -> T mainResult :: Env -> T
mainResult r = case Map.lookup "main" r of mainResult r = case Map.lookup "main" r of

@ -1,30 +1,158 @@
module FileEval where module FileEval where
import Eval import Eval
import Lexer
import Parser import Parser
import Research import Research
import Data.List (partition)
import Data.Maybe (mapMaybe)
import Control.Monad (foldM)
import System.IO import System.IO
import System.FilePath (takeDirectory, normalise, (</>))
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Set as Set
extractMain :: Env -> Either String T
extractMain env =
case Map.lookup "main" env of
Just result -> Right result
Nothing -> Left "No `main` function detected"
processImports :: Set.Set FilePath -> FilePath -> FilePath -> [TricuAST]
-> Either String ([TricuAST], [(FilePath, String, FilePath)])
processImports seen base currentPath asts =
let (imports, nonImports) = partition isImp asts
importPaths = mapMaybe getImportInfo imports
in if currentPath `Set.member` seen
then Left $ "Encountered cyclic import: " ++ currentPath
else Right (nonImports, importPaths)
where
isImp (SImport _ _) = True
isImp _ = False
getImportInfo (SImport p n) = Just (p, n, makeRelativeTo currentPath p)
getImportInfo _ = Nothing
evaluateFileResult :: FilePath -> IO T evaluateFileResult :: FilePath -> IO T
evaluateFileResult filePath = do evaluateFileResult filePath = do
contents <- readFile filePath contents <- readFile filePath
let asts = parseTricu contents let tokens = lexTricu contents
let finalEnv = evalTricu Map.empty asts case parseProgram tokens of
case Map.lookup "main" finalEnv of Left err -> errorWithoutStackTrace (handleParseError err)
Just finalResult -> return finalResult Right ast -> do
Nothing -> errorWithoutStackTrace "No `main` function detected" processedAst <- preprocessFile filePath
let finalEnv = evalTricu Map.empty processedAst
case extractMain finalEnv of
Right result -> return result
Left err -> errorWithoutStackTrace err
evaluateFile :: FilePath -> IO Env evaluateFile :: FilePath -> IO Env
evaluateFile filePath = do evaluateFile filePath = do
contents <- readFile filePath contents <- readFile filePath
let asts = parseTricu contents let tokens = lexTricu contents
pure $ evalTricu Map.empty asts case parseProgram tokens of
Left err -> errorWithoutStackTrace (handleParseError err)
Right ast -> do
ast <- preprocessFile filePath
pure $ evalTricu Map.empty ast
evaluateFileWithContext :: Env -> FilePath -> IO Env evaluateFileWithContext :: Env -> FilePath -> IO Env
evaluateFileWithContext env filePath = do evaluateFileWithContext env filePath = do
contents <- readFile filePath contents <- readFile filePath
let asts = parseTricu contents let tokens = lexTricu contents
pure $ evalTricu env asts case parseProgram tokens of
Left err -> errorWithoutStackTrace (handleParseError err)
Right ast -> do
ast <- preprocessFile filePath
pure $ evalTricu env ast
preprocessFile :: FilePath -> IO [TricuAST]
preprocessFile p = preprocessFile' Set.empty p p
preprocessFile' :: Set.Set FilePath -> FilePath -> FilePath -> IO [TricuAST]
preprocessFile' seen base currentPath = do
contents <- readFile currentPath
let tokens = lexTricu contents
case parseProgram tokens of
Left err -> errorWithoutStackTrace (handleParseError err)
Right ast ->
case processImports seen base currentPath ast of
Left err -> errorWithoutStackTrace err
Right (nonImports, importPaths) -> do
let seen' = Set.insert currentPath seen
imported <- concat <$> mapM (processImportPath seen' base) importPaths
pure $ imported ++ nonImports
where
processImportPath seen base (path, name, importPath) = do
ast <- preprocessFile' seen base importPath
pure $ map (nsDefinition (if name == "!Local" then "" else name))
$ filter (not . isImp) ast
isImp (SImport _ _) = True
isImp _ = False
makeRelativeTo :: FilePath -> FilePath -> FilePath
makeRelativeTo f i =
let d = takeDirectory f
in normalise $ d </> i
nsDefinitions :: String -> [TricuAST] -> [TricuAST]
nsDefinitions moduleName = map (nsDefinition moduleName)
nsDefinition :: String -> TricuAST -> TricuAST
nsDefinition "" def = def
nsDefinition moduleName (SDef name args body)
| isPrefixed name = SDef name args (nsBody moduleName body)
| otherwise = SDef (nsVariable moduleName name)
args (nsBody moduleName body)
nsDefinition moduleName other =
nsBody moduleName other
nsBody :: String -> TricuAST -> TricuAST
nsBody moduleName (SVar name)
| isPrefixed name = SVar name
| otherwise = SVar (nsVariable moduleName name)
nsBody moduleName (SApp func arg) =
SApp (nsBody moduleName func) (nsBody moduleName arg)
nsBody moduleName (SLambda args body) =
SLambda args (nsBodyScoped moduleName args body)
nsBody moduleName (SList items) =
SList (map (nsBody moduleName) items)
nsBody moduleName (TFork left right) =
TFork (nsBody moduleName left) (nsBody moduleName right)
nsBody moduleName (TStem subtree) =
TStem (nsBody moduleName subtree)
nsBody moduleName (SDef name args body)
| isPrefixed name = SDef name args (nsBody moduleName body)
| otherwise = SDef (nsVariable moduleName name)
args (nsBody moduleName body)
nsBody _ other = other
nsBodyScoped :: String -> [String] -> TricuAST -> TricuAST
nsBodyScoped moduleName args body = case body of
SVar name ->
if name `elem` args
then SVar name
else nsBody moduleName (SVar name)
SApp func arg ->
SApp (nsBodyScoped moduleName args func) (nsBodyScoped moduleName args arg)
SLambda innerArgs innerBody ->
SLambda innerArgs (nsBodyScoped moduleName (args ++ innerArgs) innerBody)
SList items ->
SList (map (nsBodyScoped moduleName args) items)
TFork left right ->
TFork (nsBodyScoped moduleName args left)
(nsBodyScoped moduleName args right)
TStem subtree ->
TStem (nsBodyScoped moduleName args subtree)
SDef name innerArgs innerBody ->
SDef (nsVariable moduleName name) innerArgs
(nsBodyScoped moduleName (args ++ innerArgs) innerBody)
other -> other
isPrefixed :: String -> Bool
isPrefixed name = '.' `elem` name
nsVariable :: String -> String -> String
nsVariable "" name = name
nsVariable moduleName name = moduleName ++ "." ++ name

@ -3,6 +3,7 @@ module Lexer where
import Research import Research
import Control.Monad (void) import Control.Monad (void)
import Data.Functor (($>))
import Data.Void import Data.Void
import Text.Megaparsec import Text.Megaparsec
import Text.Megaparsec.Char hiding (space) import Text.Megaparsec.Char hiding (space)
@ -12,21 +13,107 @@ import qualified Data.Set as Set
type Lexer = Parsec Void String type Lexer = Parsec Void String
tricuLexer :: Lexer [LToken]
tricuLexer = do
sc
header <- many $ do
tok <- choice
[ try lImport
, lnewline
]
sc
pure tok
tokens <- many $ do
tok <- choice tricuLexer'
sc
pure tok
sc
eof
pure (header ++ tokens)
where
tricuLexer' =
[ try lnewline
, try namespace
, try dot
, try identifier
, try keywordT
, try integerLiteral
, try stringLiteral
, assign
, colon
, openParen
, closeParen
, openBracket
, closeBracket
]
lexTricu :: String -> [LToken]
lexTricu input = case runParser tricuLexer "" input of
Left err -> errorWithoutStackTrace $ "Lexical error:\n" ++ errorBundlePretty err
Right tokens -> tokens
keywordT :: Lexer LToken keywordT :: Lexer LToken
keywordT = string "t" *> notFollowedBy alphaNumChar *> pure LKeywordT keywordT = string "t" *> notFollowedBy alphaNumChar $> LKeywordT
identifier :: Lexer LToken identifier :: Lexer LToken
identifier = do identifier = do
first <- letterChar <|> char '_' first <- lowerChar <|> char '_'
rest <- many $ letterChar rest <- many $ letterChar
<|> digitChar <|> digitChar <|> char '_' <|> char '-' <|> char '?'
<|> char '_' <|> char '-' <|> char '?' <|> char '!' <|> char '$' <|> char '#' <|> char '@' <|> char '%'
<|> char '$' <|> char '#' <|> char '@' <|> char '%'
let name = first : rest let name = first : rest
if (name == "t" || name == "__result") if name == "t" || name == "!result"
then fail "Keywords (`t`, `__result`) cannot be used as an identifier" then fail "Keywords (`t`, `!result`) cannot be used as an identifier"
else return (LIdentifier name) else return (LIdentifier name)
namespace :: Lexer LToken
namespace = do
name <- try (string "!Local") <|> do
first <- upperChar
rest <- many (letterChar <|> digitChar)
return (first:rest)
return (LNamespace name)
dot :: Lexer LToken
dot = char '.' $> LDot
lImport :: Lexer LToken
lImport = do
_ <- string "!import"
space1
LStringLiteral path <- stringLiteral
space1
LNamespace name <- namespace
return (LImport path name)
assign :: Lexer LToken
assign = char '=' $> LAssign
colon :: Lexer LToken
colon = char ':' $> LColon
openParen :: Lexer LToken
openParen = char '(' $> LOpenParen
closeParen :: Lexer LToken
closeParen = char ')' $> LCloseParen
openBracket :: Lexer LToken
openBracket = char '[' $> LOpenBracket
closeBracket :: Lexer LToken
closeBracket = char ']' $> LCloseBracket
lnewline :: Lexer LToken
lnewline = char '\n' $> LNewline
sc :: Lexer ()
sc = space
(void $ takeWhile1P (Just "space") (\c -> c == ' ' || c == '\t'))
(skipLineComment "--")
(skipBlockComment "|-" "-|")
integerLiteral :: Lexer LToken integerLiteral :: Lexer LToken
integerLiteral = do integerLiteral = do
num <- some digitChar num <- some digitChar
@ -35,67 +122,22 @@ integerLiteral = do
stringLiteral :: Lexer LToken stringLiteral :: Lexer LToken
stringLiteral = do stringLiteral = do
char '"' char '"'
content <- many (noneOf ['"']) content <- manyTill Lexer.charLiteral (char '"')
char '"' --"
return (LStringLiteral content) return (LStringLiteral content)
assign :: Lexer LToken charLiteral :: Lexer Char
assign = char '=' *> pure LAssign charLiteral = escapedChar <|> normalChar
where
colon :: Lexer LToken normalChar = noneOf ['"', '\\']
colon = char ':' *> pure LColon escapedChar = do
void $ char '\\'
backslash :: Lexer LToken c <- oneOf ['n', 't', 'r', 'f', 'b', '\\', '"', '\'']
backslash = char '\\' *> pure LBackslash return $ case c of
'n' -> '\n'
openParen :: Lexer LToken 't' -> '\t'
openParen = char '(' *> pure LOpenParen 'r' -> '\r'
'f' -> '\f'
closeParen :: Lexer LToken 'b' -> '\b'
closeParen = char ')' *> pure LCloseParen '\\' -> '\\'
'"' -> '"'
openBracket :: Lexer LToken '\'' -> '\''
openBracket = char '[' *> pure LOpenBracket
closeBracket :: Lexer LToken
closeBracket = char ']' *> pure LCloseBracket
lnewline :: Lexer LToken
lnewline = char '\n' *> pure LNewline
sc :: Lexer ()
sc = space
(void $ takeWhile1P (Just "space") (\c -> c == ' ' || c == '\t'))
(skipLineComment "--")
(skipBlockComment "|-" "-|")
tricuLexer :: Lexer [LToken]
tricuLexer = do
sc
tokens <- many $ do
tok <- choice tricuLexer'
sc
pure tok
sc
eof
pure tokens
where
tricuLexer' =
[ try lnewline
, try identifier
, try keywordT
, try integerLiteral
, try stringLiteral
, assign
, colon
, backslash
, openParen
, closeParen
, openBracket
, closeBracket
]
lexTricu :: String -> [LToken]
lexTricu input = case runParser tricuLexer "" input of
Left err -> errorWithoutStackTrace $ "Lexical error:\n" ++ errorBundlePretty err
Right tokens -> tokens

@ -8,7 +8,9 @@ import Research
import Control.Monad (foldM) import Control.Monad (foldM)
import Control.Monad.IO.Class (liftIO) import Control.Monad.IO.Class (liftIO)
import Data.Version (showVersion)
import Text.Megaparsec (runParser) import Text.Megaparsec (runParser)
import Paths_tricu (version)
import System.Console.CmdArgs import System.Console.CmdArgs
import qualified Data.Map as Map import qualified Data.Map as Map
@ -52,36 +54,75 @@ decodeMode = TDecode
main :: IO () main :: IO ()
main = do main = do
let versionStr = "tricu Evaluator and REPL " ++ showVersion version
args <- cmdArgs $ modes [replMode, evaluateMode, decodeMode] args <- cmdArgs $ modes [replMode, evaluateMode, decodeMode]
&= help "tricu: Exploring Tree Calculus" &= help "tricu: Exploring Tree Calculus"
&= program "tricu" &= program "tricu"
&= summary "tricu Evaluator and REPL" &= summary versionStr
&= versionArg [explicit, name "version", summary versionStr]
case args of case args of
Repl -> do Repl -> do
putStrLn "Welcome to the tricu REPL" putStrLn "Welcome to the tricu REPL"
putStrLn "You can exit with `CTRL+D` or the `:_exit` command.`" putStrLn "You may exit with `CTRL+D` or the `!exit` command."
library <- liftIO $ evaluateFile "./lib/base.tri" putStrLn "Try typing `!` with tab completion for more commands."
repl $ Map.delete "__result" library repl Map.empty
Evaluate { file = filePaths, form = form } -> do Evaluate { file = filePaths, form = form } -> do
result <- case filePaths of result <- case filePaths of
[] -> do [] -> runTricuT <$> getContents
t <- getContents
pure $ runTricu t
(filePath:restFilePaths) -> do (filePath:restFilePaths) -> do
initialEnv <- evaluateFile filePath initialEnv <- evaluateFile filePath
finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths
pure $ mainResult finalEnv pure $ mainResult finalEnv
let fRes = formatResult form result let fRes = formatT form result
putStr fRes putStr fRes
TDecode { file = filePaths } -> do TDecode { file = filePaths } -> do
value <- case filePaths of value <- case filePaths of
[] -> getContents [] -> getContents
(filePath:_) -> readFile filePath (filePath:_) -> readFile filePath
library <- liftIO $ evaluateFile "./lib/base.tri" putStrLn $ decodeResult $ result $ evalTricu Map.empty $ parseTricu value
putStrLn $ decodeResult $ result $ evalTricu library $ parseTricu value
runTricu :: String -> T -- Simple interfaces
runTricu input =
runTricu :: String -> String
runTricu = formatT TreeCalculus . runTricuT
runTricuT :: String -> T
runTricuT input =
let asts = parseTricu input let asts = parseTricu input
finalEnv = evalTricu Map.empty asts finalEnv = evalTricu Map.empty asts
in result finalEnv in result finalEnv
runTricuEnv :: Env -> String -> String
runTricuEnv env = formatT TreeCalculus . runTricuTEnv env
runTricuTEnv :: Env -> String -> T
runTricuTEnv env input =
let asts = parseTricu input
finalEnv = evalTricu env asts
in result finalEnv
runTricuWithEnvT :: String -> (Env, T)
runTricuWithEnvT input =
let asts = parseTricu input
finalEnv = evalTricu Map.empty asts
in (finalEnv, result finalEnv)
runTricuWithEnv :: String -> (Env, String)
runTricuWithEnv input =
let asts = parseTricu input
finalEnv = evalTricu Map.empty asts
res = result finalEnv
in (finalEnv, formatT TreeCalculus res)
runTricuEnvWithEnvT :: Env -> String -> (Env, T)
runTricuEnvWithEnvT env input =
let asts = parseTricu input
finalEnv = evalTricu env asts
in (finalEnv, result finalEnv)
runTricuEnvWithEnv :: Env -> String -> (Env, String)
runTricuEnvWithEnv env input =
let asts = parseTricu input
finalEnv = evalTricu env asts
res = result finalEnv
in (finalEnv, formatT TreeCalculus res)

@ -3,12 +3,12 @@ module Parser where
import Lexer import Lexer
import Research import Research
import Control.Monad (void) import Control.Monad (void)
import Control.Monad.State import Control.Monad.State
import Data.List.NonEmpty (toList) import Data.List.NonEmpty (toList)
import Data.Void (Void) import Data.Void (Void)
import Text.Megaparsec import Text.Megaparsec
import Text.Megaparsec.Error (ParseErrorBundle, errorBundlePretty) import Text.Megaparsec.Error (ParseErrorBundle, errorBundlePretty)
import qualified Data.Set as Set import qualified Data.Set as Set
data PState = PState data PState = PState
@ -74,9 +74,22 @@ parseSingle input =
parseProgramM :: ParserM [TricuAST] parseProgramM :: ParserM [TricuAST]
parseProgramM = do parseProgramM = do
skipMany topLevelNewline skipMany topLevelNewline
importNodes <- many (do
node <- parseImportM
skipMany topLevelNewline
return node)
skipMany topLevelNewline
exprs <- sepEndBy parseOneExpression (some topLevelNewline) exprs <- sepEndBy parseOneExpression (some topLevelNewline)
skipMany topLevelNewline skipMany topLevelNewline
return exprs return (importNodes ++ exprs)
parseImportM :: ParserM TricuAST
parseImportM = do
LImport filePath moduleName <- satisfyM isImport
pure (SImport filePath moduleName)
where
isImport (LImport _ _) = True
isImport _ = False
parseOneExpression :: ParserM TricuAST parseOneExpression :: ParserM TricuAST
parseOneExpression = scnParserM *> parseExpressionM parseOneExpression = scnParserM *> parseExpressionM
@ -117,7 +130,6 @@ parseFunctionM = do
parseLambdaM :: ParserM TricuAST parseLambdaM :: ParserM TricuAST
parseLambdaM = do parseLambdaM = do
let ident = (\case LIdentifier _ -> True; _ -> False) let ident = (\case LIdentifier _ -> True; _ -> False)
_ <- satisfyM (== LBackslash)
params <- some (satisfyM ident) params <- some (satisfyM ident)
_ <- satisfyM (== LColon) _ <- satisfyM (== LColon)
scnParserM scnParserM
@ -132,11 +144,11 @@ parseLambdaExpressionM = choice
parseAtomicLambdaM :: ParserM TricuAST parseAtomicLambdaM :: ParserM TricuAST
parseAtomicLambdaM = choice parseAtomicLambdaM = choice
[ parseVarM [ try parseLambdaM
, parseVarM
, parseTreeLeafM , parseTreeLeafM
, parseLiteralM , parseLiteralM
, parseListLiteralM , parseListLiteralM
, try parseLambdaM
, between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM , between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM
] ]
@ -192,7 +204,8 @@ parseTreeLeafOrParenthesizedM = choice
parseAtomicM :: ParserM TricuAST parseAtomicM :: ParserM TricuAST
parseAtomicM = choice parseAtomicM = choice
[ parseVarM [ try parseLambdaM
, parseVarM
, parseTreeLeafM , parseTreeLeafM
, parseListLiteralM , parseListLiteralM
, parseGroupedM , parseGroupedM
@ -242,12 +255,19 @@ parseSingleItemM = do
parseVarM :: ParserM TricuAST parseVarM :: ParserM TricuAST
parseVarM = do parseVarM = do
satisfyM (\case LIdentifier _ -> True; _ -> False) >>= \case token <- satisfyM (\case
LNamespace _ -> True
LIdentifier _ -> True
_ -> False)
case token of
LNamespace ns -> do
_ <- satisfyM (== LDot)
LIdentifier name <- satisfyM (\case LIdentifier _ -> True; _ -> False)
pure $ SVar (ns ++ "." ++ name)
LIdentifier name LIdentifier name
| name == "t" || name == "__result" -> | name == "t" || name == "!result" ->
fail ("Reserved keyword: " ++ name ++ " cannot be assigned.") fail ("Reserved keyword: " ++ name ++ " cannot be assigned.")
| otherwise -> | otherwise -> pure (SVar name)
pure (SVar name)
_ -> fail "Unexpected token while parsing variable" _ -> fail "Unexpected token while parsing variable"
parseIntLiteralM :: ParserM TricuAST parseIntLiteralM :: ParserM TricuAST

@ -6,56 +6,185 @@ import Lexer
import Parser import Parser
import Research import Research
import Control.Exception (SomeException, catch) import Control.Exception (IOException, SomeException, catch
, displayException)
import Control.Monad (forM_)
import Control.Monad.Catch (handle, MonadCatch)
import Control.Monad.IO.Class (liftIO) import Control.Monad.IO.Class (liftIO)
import Data.Char (isSpace) import Control.Monad.Trans.Class (lift)
import Data.List (dropWhile, dropWhileEnd, intercalate) import Control.Monad.Trans.Maybe (MaybeT(..), runMaybeT)
import Data.Char (isSpace, isUpper)
import Data.List (dropWhile, dropWhileEnd, isPrefixOf)
import Data.Version (showVersion)
import Paths_tricu (version)
import System.Console.Haskeline import System.Console.Haskeline
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Text as T
import qualified Data.Text.IO as T
repl :: Env -> IO () repl :: Env -> IO ()
repl env = runInputT defaultSettings (loop env) repl env = runInputT settings (withInterrupt (loop env Decode))
where where
loop :: Env -> InputT IO () settings :: Settings IO
loop env = do settings = Settings
minput <- getInputLine "tricu < " { complete = completeWord Nothing " \t" completeCommands
if , historyFile = Just "~/.local/state/tricu/history"
| Nothing <- minput -> outputStrLn "Exiting tricu" , autoAddHistory = True
| Just s <- minput, strip s == "!exit" -> outputStrLn "Exiting tricu" }
| Just s <- minput, strip s == "" -> do
outputStrLn ""
loop env
| Just s <- minput, strip s == "!load" -> do
path <- getInputLine "File path to load < "
if
| Nothing <- path -> do
outputStrLn "No input received; stopping import."
loop env
| Just p <- path -> do
loadedEnv <- liftIO $ evaluateFileWithContext env (strip p) `catch` \e -> errorHandler env e
loop $ Map.delete "__result" (Map.union loadedEnv env)
| Just s <- minput -> do
if
| take 2 s == "--" -> loop env
| otherwise -> do
newEnv <- liftIO $ processInput env s `catch` errorHandler env
loop newEnv
processInput :: Env -> String -> IO Env completeCommands :: String -> IO [Completion]
processInput env input = do completeCommands str = return $ map simpleCompletion $
filter (str `isPrefixOf`) commands
where
commands = [ "!exit"
, "!output"
, "!definitions"
, "!import"
, "!clear"
, "!save"
, "!reset"
, "!version"
]
loop :: Env -> EvaluatedForm -> InputT IO ()
loop env form = handle (interruptHandler env form) $ do
minput <- getInputLine "tricu < "
case minput of
Nothing -> outputStrLn "Exiting tricu"
Just s
| strip s == "" -> loop env form
| strip s == "!exit" -> outputStrLn "Exiting tricu"
| strip s == "!clear" -> do
liftIO $ putStr "\ESC[2J\ESC[H"
loop env form
| strip s == "!reset" -> do
outputStrLn "Environment reset to initial state"
loop Map.empty form
| strip s == "!version" -> do
outputStrLn $ "tricu version " ++ showVersion version
loop env form
| "!save" `isPrefixOf` strip s -> handleSave env form
| strip s == "!output" -> handleOutput env form
| strip s == "!definitions" -> do
let defs = Map.keys $ Map.delete "!result" env
if null defs
then outputStrLn "No definitions discovered."
else do
outputStrLn "Available definitions:"
mapM_ outputStrLn defs
loop env form
| "!import" `isPrefixOf` strip s -> handleImport env form
| take 2 s == "--" -> loop env form
| otherwise -> do
newEnv <- liftIO $ processInput env s form `catch` errorHandler env
loop newEnv form
handleOutput :: Env -> EvaluatedForm -> InputT IO ()
handleOutput env currentForm = do
let formats = [Decode, TreeCalculus, FSL, AST, Ternary, Ascii]
outputStrLn "Available output formats:"
mapM_ (\(i, f) -> outputStrLn $ show i ++ ". " ++ show f)
(zip [1..] formats)
result <- runMaybeT $ do
input <- MaybeT $ getInputLine "Select output format (1-6) < "
case reads input of
[(n, "")] | n >= 1 && n <= 6 ->
return $ formats !! (n-1)
_ -> MaybeT $ return Nothing
case result of
Nothing -> do
outputStrLn "Invalid selection. Keeping current output format."
loop env currentForm
Just newForm -> do
outputStrLn $ "Output format changed to: " ++ show newForm
loop env newForm
handleImport :: Env -> EvaluatedForm -> InputT IO ()
handleImport env form = do
res <- runMaybeT $ do
let fset = setComplete completeFilename defaultSettings
path <- MaybeT $ runInputT fset $
getInputLineWithInitial "File path to load < " ("", "")
text <- MaybeT $ liftIO $ handle (\e -> do
putStrLn $ "Error reading file: " ++ displayException (e :: IOException)
return Nothing
) $ Just <$> readFile (strip path)
case parseProgram (lexTricu text) of
Left err -> do
lift $ outputStrLn $ "Parse error: " ++ handleParseError err
MaybeT $ return Nothing
Right ast -> do
ns <- MaybeT $ runInputT defaultSettings $
getInputLineWithInitial "Namespace (or !Local for no namespace) < " ("", "")
let name = strip ns
if (name /= "!Local" && (null name || not (isUpper (head name)))) then do
lift $ outputStrLn "Namespace must start with an uppercase letter"
MaybeT $ return Nothing
else do
prog <- liftIO $ preprocessFile (strip path)
let code = case name of
"!Local" -> prog
_ -> nsDefinitions name prog
env' = evalTricu env code
return env'
case res of
Nothing -> do
outputStrLn "Import cancelled"
loop env form
Just env' ->
loop (Map.delete "!result" env') form
interruptHandler :: Env -> EvaluatedForm -> Interrupt -> InputT IO ()
interruptHandler env form _ = do
outputStrLn "Interrupted with CTRL+C\n\
\You can use the !exit command or CTRL+D to exit"
loop env form
processInput :: Env -> String -> EvaluatedForm -> IO Env
processInput env input form = do
let asts = parseTricu input let asts = parseTricu input
newEnv = evalTricu env asts newEnv = evalTricu env asts
if case Map.lookup "!result" newEnv of
| Just r <- Map.lookup "__result" newEnv -> do Just r -> do
putStrLn $ "tricu > " ++ decodeResult r putStrLn $ "tricu > " ++ formatT form r
| otherwise -> return () Nothing -> pure ()
return newEnv return newEnv
errorHandler :: Env -> SomeException -> IO (Env) errorHandler :: Env -> SomeException -> IO (Env)
errorHandler env e = do errorHandler env e = do
putStrLn $ "Error: " ++ show e putStrLn $ "Error: " ++ show e
return env return env
strip :: String -> String strip :: String -> String
strip = dropWhileEnd isSpace . dropWhile isSpace strip = dropWhileEnd isSpace . dropWhile isSpace
handleSave :: Env -> EvaluatedForm -> InputT IO ()
handleSave env form = do
let fset = setComplete completeFilename defaultSettings
path <- runInputT fset $
getInputLineWithInitial "File to save < " ("", "")
case path of
Nothing -> do
outputStrLn "Save cancelled"
loop env form
Just p -> do
let definitions = Map.toList $ Map.delete "!result" env
filepath = strip p
outputStrLn "Starting save..."
liftIO $ writeFile filepath ""
outputStrLn "File created..."
forM_ definitions $ \(name, value) -> do
let content = name ++ " = " ++ formatT TreeCalculus value ++ "\n"
outputStrLn $ "Writing definition: " ++ name ++ " with length " ++ show (length content)
liftIO $ appendFile filepath content
outputStrLn $ "Saved " ++ show (length definitions) ++ " definitions to " ++ p
loop env form

@ -1,6 +1,5 @@
module Research where module Research where
import Control.Monad.State
import Data.List (intercalate) import Data.List (intercalate)
import Data.Map (Map) import Data.Map (Map)
import Data.Text (Text, replace) import Data.Text (Text, replace)
@ -16,7 +15,7 @@ data T = Leaf | Stem T | Fork T T
-- Abstract Syntax Tree for tricu -- Abstract Syntax Tree for tricu
data TricuAST data TricuAST
= SVar String = SVar String
| SInt Int | SInt Integer
| SStr String | SStr String
| SList [TricuAST] | SList [TricuAST]
| SDef String [String] TricuAST | SDef String [String] TricuAST
@ -26,22 +25,25 @@ data TricuAST
| TFork TricuAST TricuAST | TFork TricuAST TricuAST
| SLambda [String] TricuAST | SLambda [String] TricuAST
| SEmpty | SEmpty
| SImport String String
deriving (Show, Eq, Ord) deriving (Show, Eq, Ord)
-- Lexer Tokens -- Lexer Tokens
data LToken data LToken
= LKeywordT = LKeywordT
| LIdentifier String | LIdentifier String
| LIntegerLiteral Int | LNamespace String
| LIntegerLiteral Integer
| LStringLiteral String | LStringLiteral String
| LAssign | LAssign
| LColon | LColon
| LBackslash | LDot
| LOpenParen | LOpenParen
| LCloseParen | LCloseParen
| LOpenBracket | LOpenBracket
| LCloseBracket | LCloseBracket
| LNewline | LNewline
| LImport String String
deriving (Show, Eq, Ord) deriving (Show, Eq, Ord)
-- Output formats -- Output formats
@ -49,17 +51,26 @@ data EvaluatedForm = TreeCalculus | FSL | AST | Ternary | Ascii | Decode
deriving (Show, Data, Typeable) deriving (Show, Data, Typeable)
-- Environment containing previously evaluated TC terms -- Environment containing previously evaluated TC terms
type Env = Map.Map String T type Env = Map.Map String T
-- Tree Calculus Reduction -- Tree Calculus Reduction Rules
{-
The t operator is left associative.
1. t t a b -> a
2. t (t a) b c -> a c (b c)
3a. t (t a b) c t -> a
3b. t (t a b) c (t u) -> b u
3c. t (t a b) c (t u v) -> c u v
-}
apply :: T -> T -> T apply :: T -> T -> T
apply Leaf b = Stem b apply (Fork Leaf a) _ = a
apply (Stem a) b = Fork a b apply (Fork (Stem a) b) c = apply (apply a c) (apply b c)
apply (Fork Leaf a) _ = a apply (Fork (Fork a b) c) Leaf = a
apply (Fork (Stem a1) a2) b = apply (apply a1 b) (apply a2 b) apply (Fork (Fork a b) c) (Stem u) = apply b u
apply (Fork (Fork a1 a2) a3) Leaf = a1 apply (Fork (Fork a b) c) (Fork u v) = apply (apply c u) v
apply (Fork (Fork a1 a2) a3) (Stem u) = apply a2 u -- Left associative `t`
apply (Fork (Fork a1 a2) a3) (Fork u v) = apply (apply a3 u) v apply Leaf b = Stem b
apply (Stem a) b = Fork a b
-- Booleans -- Booleans
_false :: T _false :: T
@ -73,9 +84,9 @@ _not = Fork (Fork _true (Fork Leaf _false)) Leaf
-- Marshalling -- Marshalling
ofString :: String -> T ofString :: String -> T
ofString str = ofList (map ofNumber (map fromEnum str)) ofString str = ofList $ map (ofNumber . toInteger . fromEnum) str
ofNumber :: Int -> T ofNumber :: Integer -> T
ofNumber 0 = Leaf ofNumber 0 = Leaf
ofNumber n = ofNumber n =
Fork Fork
@ -83,10 +94,9 @@ ofNumber n =
(ofNumber (n `div` 2)) (ofNumber (n `div` 2))
ofList :: [T] -> T ofList :: [T] -> T
ofList [] = Leaf ofList = foldr Fork Leaf
ofList (x:xs) = Fork x (ofList xs)
toNumber :: T -> Either String Int toNumber :: T -> Either String Integer
toNumber Leaf = Right 0 toNumber Leaf = Right 0
toNumber (Fork Leaf rest) = case toNumber rest of toNumber (Fork Leaf rest) = case toNumber rest of
Right n -> Right (2 * n) Right n -> Right (2 * n)
@ -98,7 +108,7 @@ toNumber _ = Left "Invalid Tree Calculus number"
toString :: T -> Either String String toString :: T -> Either String String
toString tc = case toList tc of toString tc = case toList tc of
Right list -> traverse (fmap toEnum . toNumber) list Right list -> traverse (fmap (toEnum . fromInteger) . toNumber) list
Left err -> Left "Invalid Tree Calculus string" Left err -> Left "Invalid Tree Calculus string"
toList :: T -> Either String [T] toList :: T -> Either String [T]
@ -109,20 +119,20 @@ toList (Fork x rest) = case toList rest of
toList _ = Left "Invalid Tree Calculus list" toList _ = Left "Invalid Tree Calculus list"
-- Outputs -- Outputs
formatResult :: EvaluatedForm -> T -> String formatT :: EvaluatedForm -> T -> String
formatResult TreeCalculus = toSimpleT . show formatT TreeCalculus = toSimpleT . show
formatResult FSL = show formatT FSL = show
formatResult AST = show . toAST formatT AST = show . toAST
formatResult Ternary = toTernaryString formatT Ternary = toTernaryString
formatResult Ascii = toAscii formatT Ascii = toAscii
formatResult Decode = decodeResult formatT Decode = decodeResult
toSimpleT :: String -> String toSimpleT :: String -> String
toSimpleT s = T.unpack toSimpleT s = T.unpack
$ replace "Fork" "t" $ replace "Fork" "t"
$ replace "Stem" "t" $ replace "Stem" "t"
$ replace "Leaf" "t" $ replace "Leaf" "t"
$ (T.pack s) $ T.pack s
toTernaryString :: T -> String toTernaryString :: T -> String
toTernaryString Leaf = "0" toTernaryString Leaf = "0"
@ -149,8 +159,18 @@ toAscii tree = go tree "" True
++ go right (prefix ++ (if isLast then " " else "| ")) True ++ go right (prefix ++ (if isLast then " " else "| ")) True
decodeResult :: T -> String decodeResult :: T -> String
decodeResult tc decodeResult Leaf = "t"
| Right num <- toNumber tc = show num decodeResult tc =
| Right str <- toString tc = "\"" ++ str ++ "\"" case (toString tc, toList tc, toNumber tc) of
| Right list <- toList tc = "[" ++ intercalate ", " (map decodeResult list) ++ "]" (Right s, _, _) | all isCommonChar s -> "\"" ++ s ++ "\""
| otherwise = formatResult TreeCalculus tc (_, _, Right n) -> show n
(_, Right xs@(_:_), _) -> "[" ++ intercalate ", " (map decodeResult xs) ++ "]"
(_, Right [], _) -> "[]"
_ -> formatT TreeCalculus tc
where
isCommonChar c =
let n = fromEnum c
in (n >= 32 && n <= 126)
|| n == 9
|| n == 10
|| n == 13

@ -7,12 +7,13 @@ import Parser
import REPL import REPL
import Research import Research
import Control.Exception (evaluate, try, SomeException) import Control.Exception (evaluate, try, SomeException)
import Control.Monad.IO.Class (liftIO) import Control.Monad.IO.Class (liftIO)
import Data.List (isInfixOf)
import Test.Tasty import Test.Tasty
import Test.Tasty.HUnit import Test.Tasty.HUnit
import Test.Tasty.QuickCheck import Test.Tasty.QuickCheck
import Text.Megaparsec (runParser) import Text.Megaparsec (runParser)
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Set as Set import qualified Data.Set as Set
@ -20,8 +21,8 @@ import qualified Data.Set as Set
main :: IO () main :: IO ()
main = defaultMain tests main = defaultMain tests
runTricu :: String -> String tricuTestString :: String -> String
runTricu s = show $ result (evalTricu Map.empty $ parseTricu s) tricuTestString s = show $ result (evalTricu Map.empty $ parseTricu s)
tests :: TestTree tests :: TestTree
tests = testGroup "Tricu Tests" tests = testGroup "Tricu Tests"
@ -29,9 +30,11 @@ tests = testGroup "Tricu Tests"
, parser , parser
, simpleEvaluation , simpleEvaluation
, lambdas , lambdas
, baseLibrary , providedLibraries
, fileEval , fileEval
, modules
, demos , demos
, decoding
] ]
lexer :: TestTree lexer :: TestTree
@ -48,7 +51,22 @@ lexer = testGroup "Lexer Tests"
, testCase "Lex escaped characters in strings" $ do , testCase "Lex escaped characters in strings" $ do
let input = "\"hello\\nworld\"" let input = "\"hello\\nworld\""
expect = Right [LStringLiteral "hello\\nworld"] expect = Right [LStringLiteral "hello\nworld"]
runParser tricuLexer "" input @?= expect
, testCase "Lex multiple escaped characters in strings" $ do
let input = "\"tab:\\t newline:\\n quote:\\\" backslash:\\\\\""
expect = Right [LStringLiteral "tab:\t newline:\n quote:\" backslash:\\"]
runParser tricuLexer "" input @?= expect
, testCase "Lex escaped characters in string literals" $ do
let input = "x = \"line1\\nline2\\tindented\""
expect = Right [LIdentifier "x", LAssign, LStringLiteral "line1\nline2\tindented"]
runParser tricuLexer "" input @?= expect
, testCase "Lex empty string with escape sequence" $ do
let input = "\"\\\"\""
expect = Right [LStringLiteral "\""]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex mixed literals" $ do , testCase "Lex mixed literals" $ do
@ -70,9 +88,9 @@ lexer = testGroup "Lexer Tests"
Right i -> i @?= expect Right i -> i @?= expect
, testCase "Error when using invalid characters in identifiers" $ do , testCase "Error when using invalid characters in identifiers" $ do
case (runParser tricuLexer "" "__result = 5") of case (runParser tricuLexer "" "!result = 5") of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of __result" Right _ -> assertFailure "Expected failure when trying to assign the value of !result"
] ]
parser :: TestTree parser :: TestTree
@ -84,7 +102,7 @@ parser = testGroup "Parser Tests"
Right _ -> assertFailure "Expected failure when trying to assign the value of T" Right _ -> assertFailure "Expected failure when trying to assign the value of T"
, testCase "Parse function definitions" $ do , testCase "Parse function definitions" $ do
let input = "x = (\\a b c : a)" let input = "x = (a b c : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a")))) expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
parseSingle input @?= expect parseSingle input @?= expect
@ -104,7 +122,7 @@ parser = testGroup "Parser Tests"
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse function with applications" $ do , testCase "Parse function with applications" $ do
let input = "f = (\\x : t x)" let input = "f = (x : t x)"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x"))) expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
parseSingle input @?= expect parseSingle input @?= expect
@ -146,22 +164,22 @@ parser = testGroup "Parser Tests"
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested parentheses in function body" $ do , testCase "Parse nested parentheses in function body" $ do
let input = "f = (\\x : t (t (t t)))" let input = "f = (x : t (t (t t)))"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf)))) expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse lambda abstractions" $ do , testCase "Parse lambda abstractions" $ do
let input = "(\\a : a)" let input = "(a : a)"
expect = (SLambda ["a"] (SVar "a")) expect = (SLambda ["a"] (SVar "a"))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse multiple arguments to lambda abstractions" $ do , testCase "Parse multiple arguments to lambda abstractions" $ do
let input = "x = (\\a b : a)" let input = "x = (a b : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a"))) expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Grouping T terms with parentheses in function application" $ do , testCase "Grouping T terms with parentheses in function application" $ do
let input = "x = (\\a : a)\nx (t)" let input = "x = (a : a)\nx (t)"
expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf] expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
parseTricu input @?= expect parseTricu input @?= expect
@ -248,7 +266,7 @@ simpleEvaluation = testGroup "Evaluation Tests"
, testCase "Immutable definitions" $ do , testCase "Immutable definitions" $ do
let input = "x = t t\nx = t\nx" let input = "x = t t\nx = t\nx"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
result <- try (evaluate (runTricu input)) :: IO (Either SomeException String) result <- try (evaluate (tricuTestString input)) :: IO (Either SomeException String)
case result of case result of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected evaluation error" Right _ -> assertFailure "Expected evaluation error"
@ -256,7 +274,7 @@ simpleEvaluation = testGroup "Evaluation Tests"
, testCase "Apply identity to Boolean Not" $ do , testCase "Apply identity to Boolean Not" $ do
let not = "(t (t (t t) (t t t)) t)" let not = "(t (t (t t) (t t t)) t)"
let input = "x = (\\a : a)\nx " ++ not let input = "x = (a : a)\nx " ++ not
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
] ]
@ -264,214 +282,182 @@ simpleEvaluation = testGroup "Evaluation Tests"
lambdas :: TestTree lambdas :: TestTree
lambdas = testGroup "Lambda Evaluation Tests" lambdas = testGroup "Lambda Evaluation Tests"
[ testCase "Lambda Identity Function" $ do [ testCase "Lambda Identity Function" $ do
let input = "id = (\\x : x)\nid t" let input = "id = (x : x)\nid t"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda Constant Function (K combinator)" $ do , testCase "Lambda Constant Function (K combinator)" $ do
let input = "k = (\\x y : x)\nk t (t t)" let input = "k = (x y : x)\nk t (t t)"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda Application with Variable" $ do , testCase "Lambda Application with Variable" $ do
let input = "id = (\\x : x)\nval = t t\nid val" let input = "id = (x : x)\nval = t t\nid val"
runTricu input @?= "Stem Leaf" tricuTestString input @?= "Stem Leaf"
, testCase "Lambda Application with Multiple Arguments" $ do , testCase "Lambda Application with Multiple Arguments" $ do
let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)" let input = "apply = (f x y : f x y)\nk = (a b : a)\napply k t (t t)"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Nested Lambda Application" $ do , testCase "Nested Lambda Application" $ do
let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t" let input = "apply = (f x y : f x y)\nid = (x : x)\napply (f x : f x) id t"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda with a complex body" $ do , testCase "Lambda with a complex body" $ do
let input = "f = (\\x : t (t x))\nf t" let input = "f = (x : t (t x))\nf t"
runTricu input @?= "Stem (Stem Leaf)" tricuTestString input @?= "Stem (Stem Leaf)"
, testCase "Lambda returning a function" $ do , testCase "Lambda returning a function" $ do
let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)" let input = "f = (x : (y : x))\ng = f t\ng (t t)"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda with Shadowing" $ do , testCase "Lambda with Shadowing" $ do
let input = "f = (\\x : (\\x : x))\nf t (t t)" let input = "f = (x : (x : x))\nf t (t t)"
runTricu input @?= "Stem Leaf" tricuTestString input @?= "Stem Leaf"
, testCase "Lambda returning another lambda" $ do , testCase "Lambda returning another lambda" $ do
let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)" let input = "k = (x : (y : x))\nk_app = k t\nk_app (t t)"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda with free variables" $ do , testCase "Lambda with free variables" $ do
let input = "y = t t\nf = (\\x : y)\nf t" let input = "y = t t\nf = (x : y)\nf t"
runTricu input @?= "Stem Leaf" tricuTestString input @?= "Stem Leaf"
, testCase "SKI Composition" $ do , testCase "SKI Composition" $ do
let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)" let input = "s = (x y z : x z (y z))\nk = (x y : x)\ni = (x : x)\ncomp = s k i\ncomp t (t t)"
runTricu input @?= "Stem (Stem Leaf)" tricuTestString input @?= "Stem (Stem Leaf)"
, testCase "Lambda with multiple parameters and application" $ do , testCase "Lambda with multiple parameters and application" $ do
let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)" let input = "f = (a b c : t a b c)\nf t (t t) (t t t)"
runTricu input @?= "Stem Leaf" tricuTestString input @?= "Stem Leaf"
, testCase "Lambda with nested application in the body" $ do , testCase "Lambda with nested application in the body" $ do
let input = "f = (\\x : t (t (t x)))\nf t" let input = "f = (x : t (t (t x)))\nf t"
runTricu input @?= "Stem (Stem (Stem Leaf))" tricuTestString input @?= "Stem (Stem (Stem Leaf))"
, testCase "Lambda returning a function and applying it" $ do , testCase "Lambda returning a function and applying it" $ do
let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)" let input = "f = (x : (y : t x y))\ng = f t\ng (t t)"
runTricu input @?= "Fork Leaf (Stem Leaf)" tricuTestString input @?= "Fork Leaf (Stem Leaf)"
, testCase "Lambda applying a variable" $ do , testCase "Lambda applying a variable" $ do
let input = "id = (\\x : x)\na = t t\nid a" let input = "id = (x : x)\na = t t\nid a"
runTricu input @?= "Stem Leaf" tricuTestString input @?= "Stem Leaf"
, testCase "Nested lambda abstractions in the same expression" $ do , testCase "Nested lambda abstractions in the same expression" $ do
let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t" let input = "f = (x : (y : x y))\ng = (z : z)\nf g t"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda with a string literal" $ do , testCase "Lambda applied to string literal" $ do
let input = "f = (\\x : x)\nf \"hello\"" let input = "f = (x : x)\nf \"hello\""
runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))" tricuTestString input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
, testCase "Lambda with an integer literal" $ do , testCase "Lambda applied to integer literal" $ do
let input = "f = (\\x : x)\nf 42" let input = "f = (x : x)\nf 42"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))" tricuTestString input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
, testCase "Lambda with a list literal" $ do , testCase "Lambda applied to list literal" $ do
let input = "f = (\\x : x)\nf [t (t t)]" let input = "f = (x : x)\nf [t (t t)]"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)" tricuTestString input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
, testCase "Lambda containing list literal" $ do
let input = "(a : [(a)]) 1"
tricuTestString input @?= "Fork (Fork (Stem Leaf) Leaf) Leaf"
] ]
baseLibrary :: TestTree providedLibraries :: TestTree
baseLibrary = testGroup "Library Tests" providedLibraries = testGroup "Library Tests"
[ testCase "K combinator 1" $ do [ testCase "Triage test Leaf" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/list.tri"
let input = "k (t) (t t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "K combinator 2" $ do
library <- evaluateFile "./lib/base.tri"
let input = "k (t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "K combinator 3" $ do
library <- evaluateFile "./lib/base.tri"
let input = "k (t t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf
, testCase "S combinator" $ do
library <- evaluateFile "./lib/base.tri"
let input = "s (t) (t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf (Stem Leaf)
, testCase "SKK == I (fully expanded)" $ do
library <- evaluateFile "./lib/base.tri"
let input = "s k k"
env = evalTricu library (parseTricu input)
result env @?= Fork (Stem (Stem Leaf)) (Stem Leaf)
, testCase "I combinator" $ do
library <- evaluateFile "./lib/base.tri"
let input = "i not?"
env = evalTricu library (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) (Fork Leaf (Fork Leaf Leaf))
, testCase "Triage test Leaf" $ do
library <- evaluateFile "./lib/base.tri"
let input = "test t" let input = "test t"
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Leaf\"" env @?= "\"Leaf\""
, testCase "Triage test (Stem Leaf)" $ do , testCase "Triage test (Stem Leaf)" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/list.tri"
let input = "test (t t)" let input = "test (t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Stem\"" env @?= "\"Stem\""
, testCase "Triage test (Fork Leaf Leaf)" $ do , testCase "Triage test (Fork Leaf Leaf)" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/list.tri"
let input = "test (t t t)" let input = "test (t t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Fork\"" env @?= "\"Fork\""
, testCase "Boolean NOT: true" $ do , testCase "Boolean NOT: true" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/list.tri"
let input = "not? true" let input = "not? true"
env = result $ evalTricu library (parseTricu input) env = result $ evalTricu library (parseTricu input)
env @?= Leaf env @?= Leaf
, testCase "Boolean NOT: false" $ do , testCase "Boolean NOT: false" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/list.tri"
let input = "not? false" let input = "not? false"
env = result $ evalTricu library (parseTricu input) env = result $ evalTricu library (parseTricu input)
env @?= Stem Leaf env @?= Stem Leaf
, testCase "Boolean AND TF" $ do , testCase "Boolean AND TF" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/list.tri"
let input = "and? (t t) (t)" let input = "and? (t t) (t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "Boolean AND FT" $ do , testCase "Boolean AND FT" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/list.tri"
let input = "and? (t) (t t)" let input = "and? (t) (t t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "Boolean AND FF" $ do , testCase "Boolean AND FF" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/list.tri"
let input = "and? (t) (t)" let input = "and? (t) (t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "Boolean AND TT" $ do , testCase "Boolean AND TT" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/list.tri"
let input = "and? (t t) (t t)" let input = "and? (t t) (t t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "List head" $ do , testCase "List head" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/list.tri"
let input = "head [(t) (t t) (t t t)]" let input = "head [(t) (t t) (t t t)]"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "List tail" $ do , testCase "List tail" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/list.tri"
let input = "head (tail (tail [(t) (t t) (t t t)]))" let input = "head (tail (tail [(t) (t t) (t t t)]))"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf result env @?= Fork Leaf Leaf
, testCase "List map" $ do , testCase "List map" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/list.tri"
let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))" let input = "head (tail (map (a : (t t t)) [(t) (t) (t)]))"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf result env @?= Fork Leaf Leaf
, testCase "Empty list check" $ do , testCase "Empty list check" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/list.tri"
let input = "emptyList? []" let input = "emptyList? []"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "Non-empty list check" $ do , testCase "Non-empty list check" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/list.tri"
let input = "not? (emptyList? [(1) (2) (3)])" let input = "not? (emptyList? [(1) (2) (3)])"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "Concatenate strings" $ do , testCase "Concatenate strings" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/list.tri"
let input = "lconcat \"Hello, \" \"world!\"" let input = "append \"Hello, \" \"world!\""
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Hello, world!\"" env @?= "\"Hello, world!\""
, testCase "Verifying Equality" $ do , testCase "Verifying Equality" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/list.tri"
let input = "equal? (t t t) (t t t)" let input = "equal? (t t t) (t t t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
@ -488,32 +474,99 @@ fileEval = testGroup "File evaluation tests"
res @?= Fork (Stem Leaf) Leaf res @?= Fork (Stem Leaf) Leaf
, testCase "Mapping and Equality" $ do , testCase "Mapping and Equality" $ do
library <- liftIO $ evaluateFile "./lib/base.tri" library <- liftIO $ evaluateFile "./lib/list.tri"
fEnv <- liftIO $ evaluateFileWithContext library "./test/map.tri" fEnv <- liftIO $ evaluateFileWithContext library "./test/map.tri"
(mainResult fEnv) @?= Stem Leaf (mainResult fEnv) @?= Stem Leaf
, testCase "Eval and decoding string" $ do , testCase "Eval and decoding string" $ do
library <- liftIO $ evaluateFile "./lib/base.tri" library <- liftIO $ evaluateFile "./lib/list.tri"
res <- liftIO $ evaluateFileWithContext library "./test/string.tri" res <- liftIO $ evaluateFileWithContext library "./test/string.tri"
decodeResult (result res) @?= "\"String test!\"" decodeResult (result res) @?= "\"String test!\""
] ]
modules :: TestTree
modules = testGroup "Test modules"
[ testCase "Detect cyclic dependencies" $ do
result <- try (liftIO $ evaluateFileResult "./test/cycle-1.tri") :: IO (Either SomeException T)
case result of
Left e -> do
let errorMsg = show e
if "Encountered cyclic import" `isInfixOf` errorMsg
then return ()
else assertFailure $ "Unexpected error: " ++ errorMsg
Right _ -> assertFailure "Expected cyclic dependencies"
, testCase "Module imports and namespacing" $ do
res <- liftIO $ evaluateFileResult "./test/namespace-A.tri"
res @?= Leaf
, testCase "Multiple imports" $ do
res <- liftIO $ evaluateFileResult "./test/vars-A.tri"
res @?= Leaf
, testCase "Error on unresolved variable" $ do
result <- try (liftIO $ evaluateFileResult "./test/unresolved-A.tri") :: IO (Either SomeException T)
case result of
Left e -> do
let errorMsg = show e
if "undefinedVar" `isInfixOf` errorMsg
then return ()
else assertFailure $ "Unexpected error: " ++ errorMsg
Right _ -> assertFailure "Expected unresolved variable error"
, testCase "Multi-level imports" $ do
res <- liftIO $ evaluateFileResult "./test/multi-level-A.tri"
res @?= Leaf
, testCase "Lambda expression namespaces" $ do
res <- liftIO $ evaluateFileResult "./test/lambda-A.tri"
res @?= Leaf
, testCase "Local namespace import chain" $ do
res <- liftIO $ evaluateFileResult "./test/local-ns/1.tri"
res @?= Fork (Stem Leaf) (Fork (Stem Leaf) Leaf)
]
-- All of our demo tests are also module tests
demos :: TestTree demos :: TestTree
demos = testGroup "Test provided demo functionality" demos = testGroup "Test provided demo functionality"
[ testCase "Structural equality demo" $ do [ testCase "Structural equality demo" $ do
library <- liftIO $ evaluateFile "./lib/base.tri" res <- liftIO $ evaluateFileResult "./demos/equality.tri"
res <- liftIO $ evaluateFileWithContext library "./demos/equality.tri" decodeResult res @?= "t t"
decodeResult (result res) @?= "t t"
, testCase "Convert values back to source code demo" $ do , testCase "Convert values back to source code demo" $ do
library <- liftIO $ evaluateFile "./lib/base.tri" res <- liftIO $ evaluateFileResult "./demos/toSource.tri"
res <- liftIO $ evaluateFileWithContext library "./demos/toSource.tri" decodeResult res @?= "\"(t (t (t t) (t t t)) (t t (t t t)))\""
decodeResult (result res) @?= "\"(t (t (t t) (t t t)) (t t (t t t)))\""
, testCase "Determining the size of functions" $ do , testCase "Determining the size of functions" $ do
library <- liftIO $ evaluateFile "./lib/base.tri" res <- liftIO $ evaluateFileResult "./demos/size.tri"
res <- liftIO $ evaluateFileWithContext library "./demos/size.tri" decodeResult res @?= "454"
decodeResult (result res) @?= "454"
, testCase "Level Order Traversal demo" $ do , testCase "Level Order Traversal demo" $ do
library <- liftIO $ evaluateFile "./lib/base.tri" res <- liftIO $ evaluateFileResult "./demos/levelOrderTraversal.tri"
res <- liftIO $ evaluateFileWithContext library "./demos/levelOrderTraversal.tri" decodeResult res @?= "\"\n1 \n2 3 \n4 5 6 7 \n8 11 10 9 12 \""
decodeResult (result res) @?= "\"\n1 \n2 3 \n4 5 6 7 \n8 11 10 9 12 \"" ]
decoding :: TestTree
decoding = testGroup "Decoding Tests"
[ testCase "Decode Leaf" $ do
decodeResult Leaf @?= "t"
, testCase "Decode list of non-ASCII numbers" $ do
let input = ofList [ofNumber 1, ofNumber 14, ofNumber 6]
decodeResult input @?= "[1, 14, 6]"
, testCase "Decode list of ASCII numbers as a string" $ do
let input = ofList [ofNumber 97, ofNumber 98, ofNumber 99]
decodeResult input @?= "\"abc\""
, testCase "Decode small number" $ do
decodeResult (ofNumber 42) @?= "42"
, testCase "Decode large number" $ do
decodeResult (ofNumber 9999) @?= "9999"
, testCase "Decode string in list" $ do
let input = ofList [ofString "hello", ofString "world"]
decodeResult input @?= "[\"hello\", \"world\"]"
, testCase "Decode mixed list with strings" $ do
let input = ofList [ofString "hello", ofNumber 42, ofString "world"]
decodeResult input @?= "[\"hello\", 42, \"world\"]"
, testCase "Decode nested lists with strings" $ do
let input = ofList [ofList [ofString "nested"], ofString "string"]
decodeResult input @?= "[[\"nested\"], \"string\"]"
] ]

@ -1 +0,0 @@
t (t (t (t (t t) (t t t)) t) t t) t

@ -1 +0,0 @@
x = t (t t) t

@ -1,9 +1,9 @@
-- This is a tricu comment! -- This is a tricu comment!
-- t (t t) (t (t t t)) -- t (t t) (t (t t t))
-- t (t t t) (t t) -- t (t t t) (t t)
-- x = (\a : a) -- x = (a : a)
main = t (t t) t -- Fork (Stem Leaf) Leaf main = t (t t) t -- Fork (Stem Leaf) Leaf
-- t t -- t t
-- x -- x
-- x = (\a : a) -- x = (a : a)
-- t -- t

4
test/cycle-1.tri Normal file

@ -0,0 +1,4 @@
!import "cycle-2.tri" Cycle2
cycle1 = t Cycle2.cycle2

4
test/cycle-2.tri Normal file

@ -0,0 +1,4 @@
!import "cycle-1.tri" Cycle1
cycle2 = t Cycle1.cycle1

1
test/lambda-A.tri Normal file

@ -0,0 +1 @@
main = (x : x) t

4
test/local-ns/1.tri Normal file

@ -0,0 +1,4 @@
!import "2.tri" Two
main = Two.x

2
test/local-ns/2.tri Normal file

@ -0,0 +1,2 @@
!import "3.tri" !Local

1
test/local-ns/3.tri Normal file

@ -0,0 +1 @@
x = 3

@ -1,2 +1,2 @@
x = map (\i : lconcat "Successfully concatenated " i) [("two strings!")] x = map (i : append "Successfully concatenated " i) [("two strings!")]
main = equal? x [("Successfully concatenated two strings!")] main = equal? x [("Successfully concatenated two strings!")]

2
test/multi-level-A.tri Normal file

@ -0,0 +1,2 @@
!import "multi-level-B.tri" B
main = B.main

2
test/multi-level-B.tri Normal file

@ -0,0 +1,2 @@
!import "multi-level-C.tri" C
main = C.val

1
test/multi-level-C.tri Normal file

@ -0,0 +1 @@
val = t

7
test/named-imports/1.tri Normal file

@ -0,0 +1,7 @@
!import "lib/base.tri"
!import "test/named-imports/2.tri"
!import "test/named-imports/3.tri" ThreeRenamed
main = equal? (equal? Two.x 2) (equal? ThreeRenamed.x 3)

2
test/named-imports/2.tri Normal file

@ -0,0 +1,2 @@
x = 2

2
test/named-imports/3.tri Normal file

@ -0,0 +1,2 @@
x = 3

2
test/namespace-A.tri Normal file

@ -0,0 +1,2 @@
!import "namespace-B.tri" B
main = B.x

1
test/namespace-B.tri Normal file

@ -0,0 +1 @@
x = t

@ -1,21 +1,21 @@
compose = \f g x : f (g x) compose = f g x : f (g x)
succ = y (\self : succ = y (self :
triage triage
1 1
t t
(triage (triage
(t (t t)) (t (t t))
(\_ tail : t t (self tail)) (_ tail : t t (self tail))
t)) t))
size = (\x : size = (x :
(y (\self x : (y (self x :
compose succ compose succ
(triage (triage
(\x : x) (x : x)
self self
(\x y : compose (self x) (self y)) (x y : compose (self x) (self y))
x)) x 0)) x)) x 0))
size size size size

@ -1 +1 @@
head (map (\i : lconcat "String " i) [("test!")]) head (map (i : append "String " i) [("test!")])

@ -1 +0,0 @@
namedTerm = undefinedForTesting

1
test/unresolved-A.tri Normal file

@ -0,0 +1 @@
main = undefinedVar

6
test/vars-A.tri Normal file

@ -0,0 +1,6 @@
!import "vars-B.tri" B
!import "vars-C.tri" C
main = B.y (C.z)

1
test/vars-B.tri Normal file

@ -0,0 +1 @@
y = x : x

1
test/vars-C.tri Normal file

@ -0,0 +1 @@
z = t

@ -1,7 +1,7 @@
cabal-version: 1.12 cabal-version: 1.12
name: tricu name: tricu
version: 0.11.0 version: 0.19.0
description: A micro-language for exploring Tree Calculus description: A micro-language for exploring Tree Calculus
author: James Eversole author: James Eversole
maintainer: james@eversole.co maintainer: james@eversole.co
@ -26,10 +26,13 @@ executable tricu
base >=4.7 base >=4.7
, cmdargs , cmdargs
, containers , containers
, exceptions
, filepath
, haskeline , haskeline
, megaparsec , megaparsec
, mtl , mtl
, text , text
, transformers
other-modules: other-modules:
Eval Eval
FileEval FileEval
@ -52,6 +55,8 @@ test-suite tricu-tests
base base
, cmdargs , cmdargs
, containers , containers
, exceptions
, filepath
, haskeline , haskeline
, megaparsec , megaparsec
, mtl , mtl
@ -59,6 +64,7 @@ test-suite tricu-tests
, tasty-hunit , tasty-hunit
, tasty-quickcheck , tasty-quickcheck
, text , text
, transformers
default-language: Haskell2010 default-language: Haskell2010
other-modules: other-modules:
Eval Eval