Compare commits

...

No commits in common. "0.7.0" and "main" have entirely different histories.
0.7.0 ... main

46 changed files with 1261 additions and 591 deletions

View File

@ -54,16 +54,12 @@ jobs:
cp -L ./result/bin/tricu ./tricu
chmod 755 ./tricu
nix develop --command upx ./tricu
- name: Setup go for release action
uses: actions/setup-go@v5
with:
go-version: '>=1.20.1'
- name: Release binary
uses: https://gitea.com/actions/release-action@main
uses: akkuman/gitea-release-action@v1
with:
files: |-
./tricu
api_key: '${{ secrets.RELEASE_TOKEN }}'
pre_release: true
token: '${{ secrets.RELEASE_TOKEN }}'
body: '${{ gitea.event.head_commit.message }}'
prerelease: true

1
.gitignore vendored
View File

@ -9,3 +9,4 @@
WD
bin/
dist*
.tricu_history

View File

@ -4,32 +4,34 @@
tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. It is fundamentally based on the application of [Tree Calculus](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf) terms, but minimal syntax sugar is included to provide a useful programming tool.
*tricu is under active development and you should expect breaking changes with every commit.*
tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`.
## Features
- Tree Calculus operator: `t`
- Assignments: `x = t t`
- Lambda abstraction syntax: `id = (\a : a)`
- Immutable definitions: `x = t t`
- Lambda abstraction: `id = (a : a)`
- List, Number, and String literals: `[(2) ("Hello")]`
- Function application: `not (not false)`
- Higher order/first-class functions: `map (\a : lconcat a "!") [("Hello")]`
- Higher order/first-class functions: `map (a : append a "!") [("Hello")]`
- Intensionality blurs the distinction between functions and data (see REPL examples)
- Immutability
- Simple module system for code organization
## REPL examples
```
tricu < -- Anything after `--` on a single line is a comment
tricu < id = (\a : a) -- Lambda abstraction is eliminated to tree calculus terms
tricu < head (map (\i : lconcat i " world!") [("Hello, ")])
tricu < id = (a : a) -- Lambda abstraction is eliminated to tree calculus terms
tricu < head (map (i : append i " world!") [("Hello, ")])
tricu > "Hello, world!"
tricu < id (head (map (\i : lconcat i " world!") [("Hello, ")]))
tricu < id (head (map (i : append i " world!") [("Hello, ")]))
tricu > "Hello, world!"
tricu < -- Intensionality! We can inspect the structure of a function or data.
tricu < triage = (\a b c : t (t a b) c)
tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork")
tricu < triage = (a b c : t (t a b) c)
tricu < test = triage "Leaf" (z : "Stem") (a b : "Fork")
tricu < test (t t)
tricu > "Stem"
tricu < -- We can even convert a term back to source code (/demos/toSource.tri)
@ -38,13 +40,21 @@ tricu > "(t (t (t t) (t t t)) (t t (t t t)))"
tricu < -- or calculate its size (/demos/size.tri)
tricu < size not?
tricu > 12
tricu < -- REPL Commands:
tricu < !definitions -- Lists all available definitions
tricu < !output -- Change output format (Tree, FSL, AST, etc.)
tricu < !import -- Import definitions from a file
tricu < !exit -- Exit the REPL
tricu < !clear -- ANSI screen clear
tricu < !save -- Save all REPL definitions to a file that you can !import
tricu < !reset -- Clear all REPL definitions
tricu < !version -- Print tricu version
```
## Installation and Use
[Releases are available for Linux.](https://git.eversole.co/James/tricu/releases)
Or you can easily build and/or run this project using [Nix](https://nixos.org/download/).
You can easily build and run this project using [Nix](https://nixos.org/download/).
- Quick Start (REPL):
- `nix run git+https://git.eversole.co/James/tricu`
@ -71,7 +81,7 @@ tricu eval [OPTIONS]
-f --file=FILE Input file path(s) for evaluation.
Defaults to stdin.
-t --form=FORM Optional output form: (tree|fsl|ast|ternary|ascii).
-t --form=FORM Optional output form: (tree|fsl|ast|ternary|ascii|decode).
Defaults to tricu-compatible `t` tree form.
tricu decode [OPTIONS]
@ -81,6 +91,12 @@ tricu decode [OPTIONS]
Defaults to stdin.
```
## Collaborating
I am happy to accept issue reports, pull requests, or questions about tricu [via email](mailto:james@eversole.co).
If you want to collaborate but don't want to email back-and-forth, please reach out via email once to let me know and I will provision a git.eversole.co account for you.
## Acknowledgements
Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog).

View File

@ -1,35 +1,37 @@
!import "../lib/base.tri" !Local
!import "../lib/list.tri" !Local
main = lambdaEqualsTC
-- We represent `false` with a Leaf and `true` with a Stem Leaf
false = t
true = t t
demo_false = t
demo_true = t t
-- Tree Calculus representation of the Boolean `not` function
not_TC? = t (t (t t) (t t t)) (t t (t t t))
-- /demos/toSource.tri contains an explanation of `triage`
triage = (\a b c : t (t a b) c)
matchBool = (\ot of : triage
of
(\_ : ot)
(\_ _ : ot)
)
-- Lambda representation of the Boolean `not` function
not_Lambda? = matchBool false true
demo_triage = a b c : t (t a b) c
demo_matchBool = a b : demo_triage b (_ : a) (_ _ : a)
-- Since tricu eliminates Lambda terms to SKI combinators, the tree form of many
-- Lambda representation of the Boolean `not` function
not_Lambda? = demo_matchBool demo_false demo_true
-- As tricu eliminates Lambda terms to SKI combinators, the tree form of many
-- functions defined via Lambda terms are larger than the most efficient TC
-- representation. Between different languages that evaluate to tree calculus
-- terms, the exact implementation of Lambda elimination may differ and lead
-- to different tree representations even if they share extensional behavior.
-- representation possible. Between different languages that evaluate to tree
-- calculus terms, the exact implementation of Lambda elimination may differ
-- and lead to different trees even if they share extensional behavior.
-- Let's see if these are the same:
lambdaEqualsTC = equal? not_TC? not_Lambda?
-- Here are some checks to verify their extensional behavior is the same:
true_TC? = not_TC? false
false_TC? = not_TC? true
true_TC? = not_TC? demo_false
false_TC? = not_TC? demo_true
true_Lambda? = not_Lambda? false
false_Lambda? = not_Lambda? true
true_Lambda? = not_Lambda? demo_false
false_Lambda? = not_Lambda? demo_true
bothTrueEqual? = equal? true_TC? true_Lambda?
bothFalseEqual? = equal? false_TC? false_Lambda?

View File

@ -1,11 +1,13 @@
!import "../lib/base.tri" Lib
!import "../lib/list.tri" !Local
main = exampleTwo
-- Level Order Traversal of a labelled binary tree
-- Objective: Print each "level" of the tree on a separate line
--
-- NOTICE: This demo relies on tricu base library functions
--
-- We model labelled binary trees as sublists where values act as labels. We
-- require explicit notation of empty nodes. Empty nodes can be represented
-- with an empty list, `[]`, which is equivalent to a single node `t`.
-- We model labelled binary trees as nested lists where values act as labels. We
-- require explicit notation of empty nodes. Empty nodes can be represented
-- with an empty list, `[]`, which evaluates to a single node `t`.
--
-- Example tree inputs:
-- [("1") [("2") [("4") t t] t] [("3") [("5") t t] [("6") t t]]]]
@ -15,51 +17,48 @@
-- 2 3
-- / / \
-- 4 5 6
--
label = (\node : head node)
label = node : head node
left = (\node : if (emptyList node)
[]
(if (emptyList (tail node))
[]
left = node : (if (emptyList? node)
[]
(if (emptyList? (tail node))
[]
(head (tail node))))
right = (\node : if (emptyList node)
[]
(if (emptyList (tail node))
[]
(if (emptyList (tail (tail node)))
[]
right = node : (if (emptyList? node)
[]
(if (emptyList? (tail node))
[]
(if (emptyList? (tail (tail node)))
[]
(head (tail (tail node))))))
processLevel = y (\self queue : if (emptyList queue)
[]
(pair (map label queue) (self (filter
(\node : not (emptyList node))
(lconcat (map left queue) (map right queue))))))
processLevel = y (self queue : if (emptyList? queue)
[]
(pair (map label queue) (self (filter
(node : not? (emptyList? node))
(append (map left queue) (map right queue))))))
levelOrderTraversal_ = (\a : processLevel (t a t))
levelOrderTraversal_ = a : processLevel (t a t)
toLineString = y (\self levels : if (emptyList levels)
""
(lconcat
(lconcat (map (\x : lconcat x " ") (head levels)) "")
(if (emptyList (tail levels)) "" (lconcat (t (t 10 t) t) (self (tail levels))))))
toLineString = y (self levels : if (emptyList? levels)
""
(append
(append (map (x : append x " ") (head levels)) "")
(if (emptyList? (tail levels)) "" (append (t (t 10 t) t) (self (tail levels))))))
levelOrderToString = (\s : toLineString (levelOrderTraversal_ s))
levelOrderToString = s : toLineString (levelOrderTraversal_ s)
flatten = foldl (\acc x : lconcat acc x) ""
flatten = foldl (acc x : append acc x) ""
levelOrderTraversal = (\s : lconcat (t 10 t) (flatten (levelOrderToString s)))
levelOrderTraversal = s : append (t 10 t) (flatten (levelOrderToString s))
exampleOne = levelOrderTraversal [("1")
[("2") [("4") t t] t]
exampleOne = levelOrderTraversal [("1")
[("2") [("4") t t] t]
[("3") [("5") t t] [("6") t t]]]
exampleTwo = levelOrderTraversal [("1")
[("2") [("4") [("8") t t] [("9") t t]]
[("6") [("10") t t] [("12") t t]]]
exampleTwo = levelOrderTraversal [("1")
[("2") [("4") [("8") t t] [("9") t t]]
[("6") [("10") t t] [("12") t t]]]
[("3") [("5") [("11") t t] t] [("7") t t]]]
exampleTwo

37
demos/patternMatching.tri Normal file
View File

@ -0,0 +1,37 @@
!import "../lib/patterns.tri" !Local
-- We can do conditional pattern matching by providing a list of lists, where
-- each sublist contains a boolean expression and a function to return if said
-- boolean expression evaluates to true.
value = 42
main = match value [[(equal? "Hello") (_ : ", world!")] [(equal? 42) (_ : "The answer.")]]
-- < main
-- > "The answer."
matchExample = (x : match x
[[(equal? 1) (_ : "one")]
[(equal? 2) (_ : "two")]
[(equal? 3) (_ : "three")]
[(equal? 4) (_ : "four")]
[(equal? 5) (_ : "five")]
[(equal? 6) (_ : "six")]
[(equal? 7) (_ : "seven")]
[(equal? 8) (_ : "eight")]
[(equal? 9) (_ : "nine")]
[(equal? 10) (_ : "ten")]
[ otherwise (_ : "I ran out of fingers!")]])
-- < matchExample 3
-- > "three"
-- < matchExample 5
-- > "five"
-- < matchExample 9
-- > "nine"
-- < matchExample 11
-- > "I ran out of fingers!"
-- < matchExample "three"
-- > "I ran out of fingers!"
-- < matchExample [("hello") ("world")]
-- > "I ran out of fingers!"

View File

@ -1,19 +1,11 @@
compose = (\f g x : f (g x))
!import "../lib/base.tri" !Local
!import "../lib/list.tri" !Local
succ = y (\self :
triage
1
t
(triage
(t (t t))
(\_ tail : t t (self tail))
t))
main = size size
size = (\x :
(y (\self x :
compose succ
(triage
(\x : x)
self
(\x y : compose (self x) (self y))
x)) x 0))
size = x : y (self x : compose succ (triage
id
self
(x y : compose (self x) (self y))
x)
) x 0

View File

@ -1,3 +1,7 @@
!import "../lib/base.tri" !Local
!import "../lib/list.tri" !Local
main = toSource not?
-- Thanks to intensionality, we can inspect the structure of a given value
-- even if it's a function. This includes lambdas which are eliminated to
-- Tree Calculus (TC) terms during evaluation.
@ -8,31 +12,31 @@
-- the Tree Calculus term, `triage` enables branching logic based on the term's
-- shape, making it possible to perform structure-specific operations such as
-- reconstructing the terms' source code representation.
triage = (\leaf stem fork : t (t leaf stem) fork)
-- triage = (\leaf stem fork : t (t leaf stem) fork)
-- Base case of a single Leaf
sourceLeaf = t (head "t")
-- Stem case
sourceStem = (\convert : (\a rest :
sourceStem = convert : (a rest :
t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t"
(t (head " ") -- Add a space.
(convert a -- Recursively convert the argument.
(t (head ")") rest)))))) -- Close with ")" and append the rest.
(t (head ")") rest))))) -- Close with ")" and append the rest.
-- Fork case
sourceFork = (\convert : (\a b rest :
sourceFork = convert : (a b rest :
t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t"
(t (head " ") -- Add a space.
(convert a -- Recursively convert the first arg.
(t (head " ") -- Add another space.
(convert b -- Recursively convert the second arg.
(t (head ")") rest)))))))) -- Close with ")" and append the rest.
(t (head ")") rest))))))) -- Close with ")" and append the rest.
-- Wrapper around triage
toSource_ = y (\self arg :
toSource_ = y (self arg :
triage
sourceLeaf -- `triage` "a" case, Leaf
(sourceStem self) -- `triage` "b" case, Stem
@ -40,7 +44,7 @@ toSource_ = y (\self arg :
arg) -- The term to be inspected
-- toSource takes a single TC term and returns a String
toSource = (\v : toSource_ v "")
toSource = v : toSource_ v ""
exampleOne = toSource true -- OUT: "(t t)"
exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"

View File

@ -34,6 +34,7 @@
devShells.default = pkgs.mkShell {
buildInputs = with pkgs; [
haskellPackages.cabal-install
haskellPackages.ghc-events
haskellPackages.ghcid
customGHC
upx

View File

@ -1,96 +1,74 @@
false = t
_ = t
true = t t
k = t t
i = t (t k) t
s = t (t (k t)) t
m = s i i
b = s (k s) k
c = s (s (k s) (s (k k) s)) (k k)
iC = (\a b c : s a (k c) b)
iD = b (b iC) iC
iE = b (b iD) iC
yi = (\i : b m (c b (i m)))
y = yi iC
yC = yi iD
yD = yi iE
id = (\a : a)
id = a : a
const = a b : a
pair = t
if = (\cond then else : t (t else (t t then)) t cond)
if = cond then else : t (t else (t t then)) t cond
triage = (\leaf stem fork : t (t leaf stem) fork)
test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork")
y = ((mut wait fun : wait mut (x : fun (wait mut x)))
(x : x x)
(a0 a1 a2 : t (t a0) (t t a2) a1))
matchBool = (\ot of : triage
of
(\_ : ot)
(\_ _ : ot)
compose = f g x : f (g x)
triage = leaf stem fork : t (t leaf stem) fork
test = triage "Leaf" (_ : "Stem") (_ _ : "Fork")
matchBool = (ot of : triage
of
(_ : ot)
(_ _ : ot)
)
matchList = (\oe oc : triage
oe
_
oc
)
lAnd = (triage
(_ : false)
(_ x : x)
(_ _ x : x))
matchPair = (\op : triage
_
_
op
)
lOr = (triage
(x : x)
(_ _ : true)
(_ _ _ : true))
matchPair = a : triage _ _ a
not? = matchBool false true
and? = matchBool id (\_ : false)
emptyList? = matchList true (\_ _ : false)
and? = matchBool id (_ : false)
head = matchList t (\head _ : head)
tail = matchList t (\_ tail : tail)
or? = (x z :
matchBool
(matchBool true true z)
(matchBool true false z)
x)
lconcat = y (\self : matchList
(\k : k)
(\h r k : pair h (self r k)))
xor? = (x z :
matchBool
(matchBool false true z)
(matchBool true false z)
x)
lAnd = (triage
(\_ : false)
(\_ x : x)
(\_ _ x : x)
)
equal? = y (self : triage
(triage
true
(_ : false)
(_ _ : false))
(ax :
triage
false
(self ax)
(_ _ : false))
(ax ay :
triage
false
(_ : false)
(bx by : lAnd (self ax bx) (self ay by))))
lOr = (triage
(\x : x)
(\_ _ : true)
(\_ _ _ : true)
)
map_ = y (\self :
matchList
(\_ : t)
(\head tail f : pair (f head) (self tail f)))
map = (\f l : map_ l f)
equal? = y (\self : triage
(triage
true
(\_ : false)
(\_ _ : false))
(\ax :
triage
false
(self ax)
(\_ _ : false))
(\ax ay :
triage
false
(\_ : false)
(\bx by : lAnd (self ax bx) (self ay by))))
filter_ = y (\self : matchList
(\_ : t)
(\head tail f : matchBool (t head) i (f head) (self tail f)))
filter = (\f l : filter_ l f)
foldl_ = y (\self f l x : matchList (\acc : acc) (\head tail acc : self f tail (f acc head)) l x)
foldl = (\f x l : foldl_ f l x)
foldr_ = y (\self x f l : matchList x (\head tail : f (self x f tail) head) l)
foldr = (\f x l : foldr_ x f l)
succ = y (self :
triage
1
t
(triage
(t (t t))
(_ tail : t t (self tail))
t))

70
lib/list.tri Normal file
View File

@ -0,0 +1,70 @@
!import "base.tri" !Local
_ = t
matchList = a b : triage a _ b
emptyList? = matchList true (_ _ : false)
head = matchList t (head _ : head)
tail = matchList t (_ tail : tail)
append = y (self : matchList
(k : k)
(h r k : pair h (self r k)))
lExist? = y (self x : matchList
false
(h z : or? (equal? x h) (self x z)))
map_ = y (self :
matchList
(_ : t)
(head tail f : pair (f head) (self tail f)))
map = f l : map_ l f
filter_ = y (self : matchList
(_ : t)
(head tail f : matchBool (t head) id (f head) (self tail f)))
filter = f l : filter_ l f
foldl_ = y (self f l x : matchList (acc : acc) (head tail acc : self f tail (f acc head)) l x)
foldl = f x l : foldl_ f l x
foldr_ = y (self x f l : matchList x (head tail : f (self x f tail) head) l)
foldr = f x l : foldr_ x f l
length = y (self : matchList
0
(_ tail : succ (self tail)))
reverse = y (self : matchList
t
(head tail : append (self tail) (pair head t)))
snoc = y (self x : matchList
(pair x t)
(h z : pair h (self x z)))
count = y (self x : matchList
0
(h z : matchBool
(succ (self x z))
(self x z)
(equal? x h)))
last = y (self : matchList
t
(hd tl : matchBool
hd
(self tl)
(emptyList? tl)))
all? = y (self pred : matchList
true
(h z : and? (pred h) (self pred z)))
any? = y (self pred : matchList
false
(h z : or? (pred h) (self pred z)))
intersect = xs ys : filter (x : lExist? x ys) xs

24
lib/patterns.tri Normal file
View File

@ -0,0 +1,24 @@
!import "base.tri" !Local
!import "list.tri" List
match_ = y (self value patterns :
triage
t
(_ : t)
(pattern rest :
triage
t
(_ : t)
(test result :
if (test value)
(result value)
(self value rest))
pattern)
patterns)
match = (value patterns :
match_ value (List.map (sublist :
pair (List.head sublist) (List.head (List.tail sublist)))
patterns))
otherwise = const (t t)

View File

@ -3,38 +3,43 @@ module Eval where
import Parser
import Research
import Data.List (partition, (\\))
import Data.Map (Map)
import qualified Data.Map as Map
import qualified Data.Set as Set
evalSingle :: Env -> TricuAST -> Env
evalSingle env term
| SFunc name [] body <- term =
if
| Map.member name env ->
errorWithoutStackTrace $
"Error: Identifier '" ++ name ++ "' is already defined."
| otherwise ->
let res = evalAST env body
in Map.insert "__result" res (Map.insert name res env)
| SApp func arg <- term =
let res = apply (evalAST env func) (evalAST env arg)
in Map.insert "__result" res env
| SVar name <- term =
case Map.lookup name env of
Just v -> Map.insert "__result" v env
Nothing -> errorWithoutStackTrace $ "Variable " ++ name ++ " not defined"
| otherwise =
Map.insert "__result" (evalAST env term) env
| SDef name [] body <- term
= case Map.lookup name env of
Just existingValue
| existingValue == evalAST env body -> env
| otherwise -> errorWithoutStackTrace $
"Unable to rebind immutable identifier: " ++ name
Nothing ->
let res = evalAST env body
in Map.insert "!result" res (Map.insert name res env)
| SApp func arg <- term
= let res = apply (evalAST env func) (evalAST env arg)
in Map.insert "!result" res env
| SVar name <- term
= case Map.lookup name env of
Just v -> Map.insert "!result" v env
Nothing ->
errorWithoutStackTrace $ "Variable `" ++ name ++ "` not defined\n\
\This error should never occur here. Please report this as an issue."
| otherwise
= Map.insert "!result" (evalAST env term) env
evalTricu :: Env -> [TricuAST] -> Env
evalTricu env [] = env
evalTricu env [x] =
let updatedEnv = evalSingle env x
in Map.insert "__result" (result updatedEnv) updatedEnv
evalTricu env (x:xs) =
evalTricu (evalSingle env x) xs
evalTricu env x = go env (reorderDefs env x)
where
go env [] = env
go env [x] =
let updatedEnv = evalSingle env x
in Map.insert "!result" (result updatedEnv) updatedEnv
go env (x:xs) =
evalTricu (evalSingle env x) xs
evalAST :: Env -> TricuAST -> T
evalAST env term
@ -54,16 +59,30 @@ evalAST env term
(errorWithoutStackTrace $ "Variable " ++ name ++ " not defined")
name env
-- https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf
-- Chapter 4: Lambda-Abstraction
elimLambda :: TricuAST -> TricuAST
elimLambda = go
where
-- η-reduction
go (SLambda [v] (SApp f (SVar x)))
| v == x && not (isFree v f) = elimLambda f
-- Triage optimization
go (SLambda [a] (SLambda [b] (SLambda [c] body)))
| body == triageBody = _TRIAGE
where
triageBody =
SApp (SApp TLeaf (SApp (SApp TLeaf (SVar a)) (SVar b))) (SVar c)
-- Composition optimization
go (SLambda [f] (SLambda [g] (SLambda [x] body)))
| body == SApp (SVar f) (SApp (SVar g) (SVar x)) = _B
-- General elimination
go (SLambda [v] (SList xs))
= elimLambda (SLambda [v] (foldr wrapTLeaf TLeaf xs))
where wrapTLeaf m r = SApp (SApp TLeaf m) r
go (SLambda (v:vs) body)
| null vs = toSKI v (elimLambda body)
| otherwise = elimLambda (SLambda [v] (SLambda vs body))
go (SApp f g) = SApp (elimLambda f) (elimLambda g)
go x = x
| null vs = toSKI v (elimLambda body)
| otherwise = elimLambda (SLambda [v] (SLambda vs body))
go (SApp f g) = SApp (elimLambda f) (elimLambda g)
go x = x
toSKI x (SVar y)
| x == y = _I
@ -73,25 +92,106 @@ elimLambda = go
| otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u)
toSKI x t
| not (isFree x t) = SApp _K t
| otherwise = SApp (SApp _S (toSKI x t)) TLeaf
| otherwise = errorWithoutStackTrace "Unhandled toSKI conversion"
_S = parseSingle "t (t (t t t)) t"
_K = parseSingle "t t"
_I = parseSingle "t (t (t t)) t"
isFree x = Set.member x . freeVars
freeVars (SVar v ) = Set.singleton v
freeVars (SInt _ ) = Set.empty
freeVars (SStr _ ) = Set.empty
freeVars (SList s ) = foldMap freeVars s
freeVars (SApp f a ) = freeVars f <> freeVars a
freeVars (TLeaf ) = Set.empty
freeVars (SFunc _ _ b) = freeVars b
freeVars (TStem t ) = freeVars t
freeVars (TFork l r ) = freeVars l <> freeVars r
freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v
_S = parseSingle "t (t (t t t)) t"
_K = parseSingle "t t"
_I = parseSingle "t (t (t t)) t"
_B = parseSingle "t (t (t t (t (t (t t t)) t))) (t t)"
_TRIAGE = parseSingle "t (t (t t (t (t (t t t))))) t"
isFree :: String -> TricuAST -> Bool
isFree x = Set.member x . freeVars
freeVars :: TricuAST -> Set.Set String
freeVars (SVar v ) = Set.singleton v
freeVars (SInt _ ) = Set.empty
freeVars (SStr _ ) = Set.empty
freeVars (SList s ) = foldMap freeVars s
freeVars (SApp f a ) = freeVars f <> freeVars a
freeVars TLeaf = Set.empty
freeVars (SDef _ _ b) = freeVars b
freeVars (TStem t ) = freeVars t
freeVars (TFork l r ) = freeVars l <> freeVars r
freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v
freeVars _ = Set.empty
reorderDefs :: Env -> [TricuAST] -> [TricuAST]
reorderDefs env defs
| not (null missingDeps) =
errorWithoutStackTrace $
"Missing dependencies detected: " ++ show missingDeps
| otherwise = orderedDefs ++ others
where
(defsOnly, others) = partition isDef defs
defNames = [ name | SDef name _ _ <- defsOnly ]
defsWithFreeVars = [(def, freeVars body) | def@(SDef _ _ body) <- defsOnly]
graph = buildDepGraph defsOnly
sortedDefs = sortDeps graph
defMap = Map.fromList [(name, def) | def@(SDef name _ _) <- defsOnly]
orderedDefs = map (\name -> defMap Map.! name) sortedDefs
freeVarsDefs = foldMap snd defsWithFreeVars
freeVarsOthers = foldMap freeVars others
allFreeVars = freeVarsDefs <> freeVarsOthers
validNames = Set.fromList defNames `Set.union` Set.fromList (Map.keys env)
missingDeps = Set.toList (allFreeVars `Set.difference` validNames)
isDef (SDef _ _ _) = True
isDef _ = False
buildDepGraph :: [TricuAST] -> Map.Map String (Set.Set String)
buildDepGraph topDefs
| not (null conflictingDefs) =
errorWithoutStackTrace $
"Conflicting definitions detected: " ++ show conflictingDefs
| otherwise =
Map.fromList
[ (name, depends topDefs (SDef name [] body))
| SDef name _ body <- topDefs]
where
defsMap = Map.fromListWith (++)
[(name, [(name, body)]) | SDef name _ body <- topDefs]
conflictingDefs =
[ name
| (name, defs) <- Map.toList defsMap
, let bodies = map snd defs
, not $ all (== head bodies) (tail bodies)
]
sortDeps :: Map.Map String (Set.Set String) -> [String]
sortDeps graph = go [] Set.empty (Map.keys graph)
where
go sorted sortedSet [] = sorted
go sorted sortedSet remaining =
let ready = [ name | name <- remaining
, let deps = Map.findWithDefault Set.empty name graph
, Set.isSubsetOf deps sortedSet ]
notReady = remaining \\ ready
in if null ready
then errorWithoutStackTrace
"ERROR: Cyclic dependency detected and prohibited.\n\
\RESOLVE: Use nested lambdas."
else go (sorted ++ ready)
(Set.union sortedSet (Set.fromList ready))
notReady
depends :: [TricuAST] -> TricuAST -> Set.Set String
depends topDefs (SDef _ _ body) =
Set.intersection
(Set.fromList [n | SDef n _ _ <- topDefs])
(freeVars body)
depends _ _ = Set.empty
result :: Env -> T
result r = case Map.lookup "__result" r of
result r = case Map.lookup "!result" r of
Just a -> a
Nothing -> errorWithoutStackTrace "No __result field found in provided environment"
Nothing -> errorWithoutStackTrace "No !result field found in provided env"
mainResult :: Env -> T
mainResult r = case Map.lookup "main" r of
Just a -> a
Nothing -> errorWithoutStackTrace "No valid definition for `main` found."

View File

@ -1,30 +1,158 @@
module FileEval where
import Eval
import Lexer
import Parser
import Research
import Data.List (partition)
import Data.Maybe (mapMaybe)
import Control.Monad (foldM)
import System.IO
import System.FilePath (takeDirectory, normalise, (</>))
import qualified Data.Map as Map
import qualified Data.Set as Set
extractMain :: Env -> Either String T
extractMain env =
case Map.lookup "main" env of
Just result -> Right result
Nothing -> Left "No `main` function detected"
processImports :: Set.Set FilePath -> FilePath -> FilePath -> [TricuAST]
-> Either String ([TricuAST], [(FilePath, String, FilePath)])
processImports seen base currentPath asts =
let (imports, nonImports) = partition isImp asts
importPaths = mapMaybe getImportInfo imports
in if currentPath `Set.member` seen
then Left $ "Encountered cyclic import: " ++ currentPath
else Right (nonImports, importPaths)
where
isImp (SImport _ _) = True
isImp _ = False
getImportInfo (SImport p n) = Just (p, n, makeRelativeTo currentPath p)
getImportInfo _ = Nothing
evaluateFileResult :: FilePath -> IO T
evaluateFileResult filePath = do
contents <- readFile filePath
let asts = parseTricu contents
let finalEnv = evalTricu Map.empty asts
case Map.lookup "__result" finalEnv of
Just finalResult -> return finalResult
Nothing -> errorWithoutStackTrace "No expressions to evaluate found"
let tokens = lexTricu contents
case parseProgram tokens of
Left err -> errorWithoutStackTrace (handleParseError err)
Right ast -> do
processedAst <- preprocessFile filePath
let finalEnv = evalTricu Map.empty processedAst
case extractMain finalEnv of
Right result -> return result
Left err -> errorWithoutStackTrace err
evaluateFile :: FilePath -> IO Env
evaluateFile filePath = do
contents <- readFile filePath
let asts = parseTricu contents
pure $ evalTricu Map.empty asts
let tokens = lexTricu contents
case parseProgram tokens of
Left err -> errorWithoutStackTrace (handleParseError err)
Right ast -> do
ast <- preprocessFile filePath
pure $ evalTricu Map.empty ast
evaluateFileWithContext :: Env -> FilePath -> IO Env
evaluateFileWithContext env filePath = do
contents <- readFile filePath
let asts = parseTricu contents
pure $ evalTricu env asts
let tokens = lexTricu contents
case parseProgram tokens of
Left err -> errorWithoutStackTrace (handleParseError err)
Right ast -> do
ast <- preprocessFile filePath
pure $ evalTricu env ast
preprocessFile :: FilePath -> IO [TricuAST]
preprocessFile p = preprocessFile' Set.empty p p
preprocessFile' :: Set.Set FilePath -> FilePath -> FilePath -> IO [TricuAST]
preprocessFile' seen base currentPath = do
contents <- readFile currentPath
let tokens = lexTricu contents
case parseProgram tokens of
Left err -> errorWithoutStackTrace (handleParseError err)
Right ast ->
case processImports seen base currentPath ast of
Left err -> errorWithoutStackTrace err
Right (nonImports, importPaths) -> do
let seen' = Set.insert currentPath seen
imported <- concat <$> mapM (processImportPath seen' base) importPaths
pure $ imported ++ nonImports
where
processImportPath seen base (path, name, importPath) = do
ast <- preprocessFile' seen base importPath
pure $ map (nsDefinition (if name == "!Local" then "" else name))
$ filter (not . isImp) ast
isImp (SImport _ _) = True
isImp _ = False
makeRelativeTo :: FilePath -> FilePath -> FilePath
makeRelativeTo f i =
let d = takeDirectory f
in normalise $ d </> i
nsDefinitions :: String -> [TricuAST] -> [TricuAST]
nsDefinitions moduleName = map (nsDefinition moduleName)
nsDefinition :: String -> TricuAST -> TricuAST
nsDefinition "" def = def
nsDefinition moduleName (SDef name args body)
| isPrefixed name = SDef name args (nsBody moduleName body)
| otherwise = SDef (nsVariable moduleName name)
args (nsBody moduleName body)
nsDefinition moduleName other =
nsBody moduleName other
nsBody :: String -> TricuAST -> TricuAST
nsBody moduleName (SVar name)
| isPrefixed name = SVar name
| otherwise = SVar (nsVariable moduleName name)
nsBody moduleName (SApp func arg) =
SApp (nsBody moduleName func) (nsBody moduleName arg)
nsBody moduleName (SLambda args body) =
SLambda args (nsBodyScoped moduleName args body)
nsBody moduleName (SList items) =
SList (map (nsBody moduleName) items)
nsBody moduleName (TFork left right) =
TFork (nsBody moduleName left) (nsBody moduleName right)
nsBody moduleName (TStem subtree) =
TStem (nsBody moduleName subtree)
nsBody moduleName (SDef name args body)
| isPrefixed name = SDef name args (nsBody moduleName body)
| otherwise = SDef (nsVariable moduleName name)
args (nsBody moduleName body)
nsBody _ other = other
nsBodyScoped :: String -> [String] -> TricuAST -> TricuAST
nsBodyScoped moduleName args body = case body of
SVar name ->
if name `elem` args
then SVar name
else nsBody moduleName (SVar name)
SApp func arg ->
SApp (nsBodyScoped moduleName args func) (nsBodyScoped moduleName args arg)
SLambda innerArgs innerBody ->
SLambda innerArgs (nsBodyScoped moduleName (args ++ innerArgs) innerBody)
SList items ->
SList (map (nsBodyScoped moduleName args) items)
TFork left right ->
TFork (nsBodyScoped moduleName args left)
(nsBodyScoped moduleName args right)
TStem subtree ->
TStem (nsBodyScoped moduleName args subtree)
SDef name innerArgs innerBody ->
SDef (nsVariable moduleName name) innerArgs
(nsBodyScoped moduleName (args ++ innerArgs) innerBody)
other -> other
isPrefixed :: String -> Bool
isPrefixed name = '.' `elem` name
nsVariable :: String -> String -> String
nsVariable "" name = name
nsVariable moduleName name = moduleName ++ "." ++ name

View File

@ -3,6 +3,7 @@ module Lexer where
import Research
import Control.Monad (void)
import Data.Functor (($>))
import Data.Void
import Text.Megaparsec
import Text.Megaparsec.Char hiding (space)
@ -12,21 +13,107 @@ import qualified Data.Set as Set
type Lexer = Parsec Void String
tricuLexer :: Lexer [LToken]
tricuLexer = do
sc
header <- many $ do
tok <- choice
[ try lImport
, lnewline
]
sc
pure tok
tokens <- many $ do
tok <- choice tricuLexer'
sc
pure tok
sc
eof
pure (header ++ tokens)
where
tricuLexer' =
[ try lnewline
, try namespace
, try dot
, try identifier
, try keywordT
, try integerLiteral
, try stringLiteral
, assign
, colon
, openParen
, closeParen
, openBracket
, closeBracket
]
lexTricu :: String -> [LToken]
lexTricu input = case runParser tricuLexer "" input of
Left err -> errorWithoutStackTrace $ "Lexical error:\n" ++ errorBundlePretty err
Right tokens -> tokens
keywordT :: Lexer LToken
keywordT = string "t" *> notFollowedBy alphaNumChar *> pure LKeywordT
keywordT = string "t" *> notFollowedBy alphaNumChar $> LKeywordT
identifier :: Lexer LToken
identifier = do
first <- letterChar <|> char '_'
rest <- many $ letterChar
<|> digitChar
<|> char '_' <|> char '-' <|> char '?' <|> char '!'
<|> char '$' <|> char '#' <|> char '@' <|> char '%'
first <- lowerChar <|> char '_'
rest <- many $ letterChar
<|> digitChar <|> char '_' <|> char '-' <|> char '?'
<|> char '$' <|> char '#' <|> char '@' <|> char '%'
let name = first : rest
if (name == "t" || name == "__result")
then fail "Keywords (`t`, `__result`) cannot be used as an identifier"
if name == "t" || name == "!result"
then fail "Keywords (`t`, `!result`) cannot be used as an identifier"
else return (LIdentifier name)
namespace :: Lexer LToken
namespace = do
name <- try (string "!Local") <|> do
first <- upperChar
rest <- many (letterChar <|> digitChar)
return (first:rest)
return (LNamespace name)
dot :: Lexer LToken
dot = char '.' $> LDot
lImport :: Lexer LToken
lImport = do
_ <- string "!import"
space1
LStringLiteral path <- stringLiteral
space1
LNamespace name <- namespace
return (LImport path name)
assign :: Lexer LToken
assign = char '=' $> LAssign
colon :: Lexer LToken
colon = char ':' $> LColon
openParen :: Lexer LToken
openParen = char '(' $> LOpenParen
closeParen :: Lexer LToken
closeParen = char ')' $> LCloseParen
openBracket :: Lexer LToken
openBracket = char '[' $> LOpenBracket
closeBracket :: Lexer LToken
closeBracket = char ']' $> LCloseBracket
lnewline :: Lexer LToken
lnewline = char '\n' $> LNewline
sc :: Lexer ()
sc = space
(void $ takeWhile1P (Just "space") (\c -> c == ' ' || c == '\t'))
(skipLineComment "--")
(skipBlockComment "|-" "-|")
integerLiteral :: Lexer LToken
integerLiteral = do
num <- some digitChar
@ -35,67 +122,22 @@ integerLiteral = do
stringLiteral :: Lexer LToken
stringLiteral = do
char '"'
content <- many (noneOf ['"'])
char '"' --"
content <- manyTill Lexer.charLiteral (char '"')
return (LStringLiteral content)
assign :: Lexer LToken
assign = char '=' *> pure LAssign
colon :: Lexer LToken
colon = char ':' *> pure LColon
backslash :: Lexer LToken
backslash = char '\\' *> pure LBackslash
openParen :: Lexer LToken
openParen = char '(' *> pure LOpenParen
closeParen :: Lexer LToken
closeParen = char ')' *> pure LCloseParen
openBracket :: Lexer LToken
openBracket = char '[' *> pure LOpenBracket
closeBracket :: Lexer LToken
closeBracket = char ']' *> pure LCloseBracket
lnewline :: Lexer LToken
lnewline = char '\n' *> pure LNewline
sc :: Lexer ()
sc = space
(void $ takeWhile1P (Just "space") (\c -> c == ' ' || c == '\t'))
(skipLineComment "--")
(skipBlockComment "|-" "-|")
tricuLexer :: Lexer [LToken]
tricuLexer = do
sc
tokens <- many $ do
tok <- choice tricuLexer'
sc
pure tok
sc
eof
pure tokens
where
tricuLexer' =
[ try lnewline
, try identifier
, try keywordT
, try integerLiteral
, try stringLiteral
, assign
, colon
, backslash
, openParen
, closeParen
, openBracket
, closeBracket
]
lexTricu :: String -> [LToken]
lexTricu input = case runParser tricuLexer "" input of
Left err -> errorWithoutStackTrace $ "Lexical error:\n" ++ errorBundlePretty err
Right tokens -> tokens
charLiteral :: Lexer Char
charLiteral = escapedChar <|> normalChar
where
normalChar = noneOf ['"', '\\']
escapedChar = do
void $ char '\\'
c <- oneOf ['n', 't', 'r', 'f', 'b', '\\', '"', '\'']
return $ case c of
'n' -> '\n'
't' -> '\t'
'r' -> '\r'
'f' -> '\f'
'b' -> '\b'
'\\' -> '\\'
'"' -> '"'
'\'' -> '\''

View File

@ -1,6 +1,6 @@
module Main where
import Eval (evalTricu, result)
import Eval (evalTricu, mainResult, result)
import FileEval
import Parser (parseTricu)
import REPL
@ -8,7 +8,9 @@ import Research
import Control.Monad (foldM)
import Control.Monad.IO.Class (liftIO)
import Data.Version (showVersion)
import Text.Megaparsec (runParser)
import Paths_tricu (version)
import System.Console.CmdArgs
import qualified Data.Map as Map
@ -16,7 +18,7 @@ import qualified Data.Map as Map
data TricuArgs
= Repl
| Evaluate { file :: [FilePath], form :: EvaluatedForm }
| Decode { file :: [FilePath] }
| TDecode { file :: [FilePath] }
deriving (Show, Data, Typeable)
replMode :: TricuArgs
@ -31,7 +33,7 @@ evaluateMode = Evaluate
\ Defaults to stdin."
&= name "f" &= typ "FILE"
, form = TreeCalculus &= typ "FORM"
&= help "Optional output form: (tree|fsl|ast|ternary|ascii).\n \
&= help "Optional output form: (tree|fsl|ast|ternary|ascii|decode).\n \
\ Defaults to tricu-compatible `t` tree form."
&= name "t"
}
@ -40,7 +42,7 @@ evaluateMode = Evaluate
&= name "eval"
decodeMode :: TricuArgs
decodeMode = Decode
decodeMode = TDecode
{ file = def
&= help "Optional input file path to attempt decoding.\n \
\ Defaults to stdin."
@ -52,16 +54,17 @@ decodeMode = Decode
main :: IO ()
main = do
let versionStr = "tricu Evaluator and REPL " ++ showVersion version
args <- cmdArgs $ modes [replMode, evaluateMode, decodeMode]
&= help "tricu: Exploring Tree Calculus"
&= program "tricu"
&= summary "tricu Evaluator and REPL"
&= summary versionStr
&= versionArg [explicit, name "version", summary versionStr]
case args of
Repl -> do
putStrLn "Welcome to the tricu REPL"
putStrLn "You can exit with `CTRL+D` or the `:_exit` command.`"
library <- liftIO $ evaluateFile "./lib/base.tri"
repl $ Map.delete "__result" library
putStrLn "You can exit with `CTRL+D` or the `!exit` command.`"
repl Map.empty
Evaluate { file = filePaths, form = form } -> do
result <- case filePaths of
[] -> do
@ -70,15 +73,14 @@ main = do
(filePath:restFilePaths) -> do
initialEnv <- evaluateFile filePath
finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths
pure $ result finalEnv
pure $ mainResult finalEnv
let fRes = formatResult form result
putStr fRes
Decode { file = filePaths } -> do
TDecode { file = filePaths } -> do
value <- case filePaths of
[] -> getContents
(filePath:_) -> readFile filePath
library <- liftIO $ evaluateFile "./lib/base.tri"
putStrLn $ decodeResult $ result $ evalTricu library $ parseTricu value
putStrLn $ decodeResult $ result $ evalTricu Map.empty $ parseTricu value
runTricu :: String -> T
runTricu input =

View File

@ -3,12 +3,12 @@ module Parser where
import Lexer
import Research
import Control.Monad (void)
import Control.Monad (void)
import Control.Monad.State
import Data.List.NonEmpty (toList)
import Data.Void (Void)
import Data.List.NonEmpty (toList)
import Data.Void (Void)
import Text.Megaparsec
import Text.Megaparsec.Error (ParseErrorBundle, errorBundlePretty)
import Text.Megaparsec.Error (ParseErrorBundle, errorBundlePretty)
import qualified Data.Set as Set
data PState = PState
@ -74,9 +74,22 @@ parseSingle input =
parseProgramM :: ParserM [TricuAST]
parseProgramM = do
skipMany topLevelNewline
importNodes <- many (do
node <- parseImportM
skipMany topLevelNewline
return node)
skipMany topLevelNewline
exprs <- sepEndBy parseOneExpression (some topLevelNewline)
skipMany topLevelNewline
return exprs
return (importNodes ++ exprs)
parseImportM :: ParserM TricuAST
parseImportM = do
LImport filePath moduleName <- satisfyM isImport
pure (SImport filePath moduleName)
where
isImport (LImport _ _) = True
isImport _ = False
parseOneExpression :: ParserM TricuAST
parseOneExpression = scnParserM *> parseExpressionM
@ -85,13 +98,10 @@ scnParserM :: ParserM ()
scnParserM = skipMany $ do
t <- lookAhead anySingle
st <- get
if | (parenDepth st > 0 || bracketDepth st > 0) && case t of
LNewline -> True
_ -> False -> void $ satisfyM $ \case
LNewline -> True
_ -> False
| otherwise -> fail "In nested context or no space token" <|> empty
if | (parenDepth st > 0 || bracketDepth st > 0) && (t == LNewline) ->
void $ satisfyM (== LNewline)
| otherwise ->
fail "In nested context or no space token" <|> empty
eofM :: ParserM ()
eofM = lift eof
@ -109,32 +119,22 @@ parseExpressionM = choice
parseFunctionM :: ParserM TricuAST
parseFunctionM = do
LIdentifier name <- satisfyM $ \case
LIdentifier _ -> True
_ -> False
args <- many $ satisfyM $ \case
LIdentifier _ -> True
_ -> False
let ident = (\case LIdentifier _ -> True; _ -> False)
LIdentifier name <- satisfyM ident
args <- many $ satisfyM ident
_ <- satisfyM (== LAssign)
scnParserM
body <- parseExpressionM
pure (SFunc name (map getIdentifier args) body)
pure (SDef name (map getIdentifier args) body)
parseLambdaM :: ParserM TricuAST
parseLambdaM =
between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) $ do
_ <- satisfyM (== LBackslash)
param <- satisfyM $ \case
LIdentifier _ -> True
_ -> False
rest <- many $ satisfyM $ \case
LIdentifier _ -> True
_ -> False
_ <- satisfyM (== LColon)
scnParserM
body <- parseLambdaExpressionM
let nested = foldr (\v acc -> SLambda [getIdentifier v] acc) body rest
pure (SLambda [getIdentifier param] nested)
parseLambdaM = do
let ident = (\case LIdentifier _ -> True; _ -> False)
params <- some (satisfyM ident)
_ <- satisfyM (== LColon)
scnParserM
body <- parseLambdaExpressionM
pure $ foldr (\param acc -> SLambda [getIdentifier param] acc) body params
parseLambdaExpressionM :: ParserM TricuAST
parseLambdaExpressionM = choice
@ -144,11 +144,11 @@ parseLambdaExpressionM = choice
parseAtomicLambdaM :: ParserM TricuAST
parseAtomicLambdaM = choice
[ parseVarM
[ try parseLambdaM
, parseVarM
, parseTreeLeafM
, parseLiteralM
, parseListLiteralM
, try parseLambdaM
, between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM
]
@ -180,9 +180,8 @@ parseAtomicBaseM = choice
parseTreeLeafM :: ParserM TricuAST
parseTreeLeafM = do
_ <- satisfyM $ \case
LKeywordT -> True
_ -> False
let keyword = (\case LKeywordT -> True; _ -> False)
_ <- satisfyM keyword
notFollowedBy $ lift $ satisfy (== LAssign)
pure TLeaf
@ -205,7 +204,8 @@ parseTreeLeafOrParenthesizedM = choice
parseAtomicM :: ParserM TricuAST
parseAtomicM = choice
[ parseVarM
[ try parseLambdaM
, parseVarM
, parseTreeLeafM
, parseListLiteralM
, parseGroupedM
@ -248,37 +248,45 @@ parseGroupedItemM = do
parseSingleItemM :: ParserM TricuAST
parseSingleItemM = do
token <- satisfyM $ \case
LIdentifier _ -> True
LKeywordT -> True
_ -> False
case token of
LIdentifier name -> pure (SVar name)
LKeywordT -> pure TLeaf
_ -> fail "Unexpected token in list item"
token <- satisfyM (\case LIdentifier _ -> True; LKeywordT -> True; _ -> False)
if | LIdentifier name <- token -> pure (SVar name)
| token == LKeywordT -> pure TLeaf
| otherwise -> fail "Unexpected token in list item"
parseVarM :: ParserM TricuAST
parseVarM = do
LIdentifier name <- satisfyM $ \case
token <- satisfyM (\case
LNamespace _ -> True
LIdentifier _ -> True
_ -> False
if name == "t" || name == "__result"
then fail ("Reserved keyword: " ++ name ++ " cannot be assigned.")
else pure (SVar name)
_ -> False)
case token of
LNamespace ns -> do
_ <- satisfyM (== LDot)
LIdentifier name <- satisfyM (\case LIdentifier _ -> True; _ -> False)
pure $ SVar (ns ++ "." ++ name)
LIdentifier name
| name == "t" || name == "!result" ->
fail ("Reserved keyword: " ++ name ++ " cannot be assigned.")
| otherwise -> pure (SVar name)
_ -> fail "Unexpected token while parsing variable"
parseIntLiteralM :: ParserM TricuAST
parseIntLiteralM = do
LIntegerLiteral value <- satisfyM $ \case
LIntegerLiteral _ -> True
_ -> False
pure (SInt value)
let intL = (\case LIntegerLiteral _ -> True; _ -> False)
token <- satisfyM intL
if | LIntegerLiteral value <- token ->
pure (SInt value)
| otherwise ->
fail "Unexpected token while parsing integer literal"
parseStrLiteralM :: ParserM TricuAST
parseStrLiteralM = do
LStringLiteral value <- satisfyM $ \case
LStringLiteral _ -> True
_ -> False
pure (SStr value)
let strL = (\case LStringLiteral _ -> True; _ -> False)
token <- satisfyM strL
if | LStringLiteral value <- token ->
pure (SStr value)
| otherwise ->
fail "Unexpected token while parsing string literal"
getIdentifier :: LToken -> String
getIdentifier (LIdentifier name) = name

View File

@ -6,63 +6,185 @@ import Lexer
import Parser
import Research
import Control.Exception (SomeException, catch)
import Control.Exception (IOException, SomeException, catch
, displayException)
import Control.Monad (forM_)
import Control.Monad.Catch (handle, MonadCatch)
import Control.Monad.IO.Class (liftIO)
import Data.Char (isSpace)
import Data.List (dropWhile, dropWhileEnd, intercalate)
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.Maybe (MaybeT(..), runMaybeT)
import Data.Char (isSpace, isUpper)
import Data.List (dropWhile, dropWhileEnd, isPrefixOf)
import Data.Version (showVersion)
import Paths_tricu (version)
import System.Console.Haskeline
import qualified Data.Map as Map
import qualified Data.Text as T
import qualified Data.Text.IO as T
repl :: Env -> IO ()
repl env = runInputT defaultSettings (loop env)
repl env = runInputT settings (withInterrupt (loop env Decode))
where
loop :: Env -> InputT IO ()
loop env = do
minput <- getInputLine "tricu < "
if
| Nothing <- minput -> outputStrLn "Exiting tricu"
| Just s <- minput, strip s == "!exit" -> outputStrLn "Exiting tricu"
| Just s <- minput, strip s == "" -> do
outputStrLn ""
loop env
| Just s <- minput, strip s == "!load" -> do
path <- getInputLine "File path to load < "
if
| Nothing <- path -> do
outputStrLn "No input received; stopping import."
loop env
| Just p <- path -> do
loadedEnv <- liftIO $ evaluateFileWithContext env (strip p) `catch` \e -> errorHandler env e
loop $ Map.delete "__result" (Map.union loadedEnv env)
| Just s <- minput -> do
if
| take 2 s == "--" -> loop env
| otherwise -> do
newEnv <- liftIO $ processInput env s `catch` errorHandler env
loop newEnv
settings :: Settings IO
settings = Settings
{ complete = completeWord Nothing " \t" completeCommands
, historyFile = Just "~/.local/state/tricu/history"
, autoAddHistory = True
}
processInput :: Env -> String -> IO Env
processInput env input = do
completeCommands :: String -> IO [Completion]
completeCommands str = return $ map simpleCompletion $
filter (str `isPrefixOf`) commands
where
commands = [ "!exit"
, "!output"
, "!definitions"
, "!import"
, "!clear"
, "!save"
, "!reset"
, "!version"
]
loop :: Env -> EvaluatedForm -> InputT IO ()
loop env form = handle (interruptHandler env form) $ do
minput <- getInputLine "tricu < "
case minput of
Nothing -> outputStrLn "Exiting tricu"
Just s
| strip s == "" -> loop env form
| strip s == "!exit" -> outputStrLn "Exiting tricu"
| strip s == "!clear" -> do
liftIO $ putStr "\ESC[2J\ESC[H"
loop env form
| strip s == "!reset" -> do
outputStrLn "Environment reset to initial state"
loop Map.empty form
| strip s == "!version" -> do
outputStrLn $ "tricu version " ++ showVersion version
loop env form
| "!save" `isPrefixOf` strip s -> handleSave env form
| strip s == "!output" -> handleOutput env form
| strip s == "!definitions" -> do
let defs = Map.keys $ Map.delete "!result" env
if null defs
then outputStrLn "No definitions discovered."
else do
outputStrLn "Available definitions:"
mapM_ outputStrLn defs
loop env form
| "!import" `isPrefixOf` strip s -> handleImport env form
| take 2 s == "--" -> loop env form
| otherwise -> do
newEnv <- liftIO $ processInput env s form `catch` errorHandler env
loop newEnv form
handleOutput :: Env -> EvaluatedForm -> InputT IO ()
handleOutput env currentForm = do
let formats = [Decode, TreeCalculus, FSL, AST, Ternary, Ascii]
outputStrLn "Available output formats:"
mapM_ (\(i, f) -> outputStrLn $ show i ++ ". " ++ show f)
(zip [1..] formats)
result <- runMaybeT $ do
input <- MaybeT $ getInputLine "Select output format (1-6) < "
case reads input of
[(n, "")] | n >= 1 && n <= 6 ->
return $ formats !! (n-1)
_ -> MaybeT $ return Nothing
case result of
Nothing -> do
outputStrLn "Invalid selection. Keeping current output format."
loop env currentForm
Just newForm -> do
outputStrLn $ "Output format changed to: " ++ show newForm
loop env newForm
handleImport :: Env -> EvaluatedForm -> InputT IO ()
handleImport env form = do
res <- runMaybeT $ do
let fset = setComplete completeFilename defaultSettings
path <- MaybeT $ runInputT fset $
getInputLineWithInitial "File path to load < " ("", "")
text <- MaybeT $ liftIO $ handle (\e -> do
putStrLn $ "Error reading file: " ++ displayException (e :: IOException)
return Nothing
) $ Just <$> readFile (strip path)
case parseProgram (lexTricu text) of
Left err -> do
lift $ outputStrLn $ "Parse error: " ++ handleParseError err
MaybeT $ return Nothing
Right ast -> do
ns <- MaybeT $ runInputT defaultSettings $
getInputLineWithInitial "Namespace (or !Local for no namespace) < " ("", "")
let name = strip ns
if (name /= "!Local" && (null name || not (isUpper (head name)))) then do
lift $ outputStrLn "Namespace must start with an uppercase letter"
MaybeT $ return Nothing
else do
prog <- liftIO $ preprocessFile (strip path)
let code = case name of
"!Local" -> prog
_ -> nsDefinitions name prog
env' = evalTricu env code
return env'
case res of
Nothing -> do
outputStrLn "Import cancelled"
loop env form
Just env' ->
loop (Map.delete "!result" env') form
interruptHandler :: Env -> EvaluatedForm -> Interrupt -> InputT IO ()
interruptHandler env form _ = do
outputStrLn "Interrupted with CTRL+C\n\
\You can use the !exit command or CTRL+D to exit"
loop env form
processInput :: Env -> String -> EvaluatedForm -> IO Env
processInput env input form = do
let asts = parseTricu input
newEnv = evalTricu env asts
if
| Just r <- Map.lookup "__result" newEnv -> do
putStrLn $ "tricu > " ++ decodeResult r
| otherwise -> return ()
case Map.lookup "!result" newEnv of
Just r -> do
putStrLn $ "tricu > " ++ formatResult form r
Nothing -> pure ()
return newEnv
errorHandler :: Env -> SomeException -> IO (Env)
errorHandler env e = do
putStrLn $ "Error: " ++ show e
return env
strip :: String -> String
strip = dropWhileEnd isSpace . dropWhile isSpace
decodeResult :: T -> String
decodeResult tc
| Right num <- toNumber tc = show num
| Right str <- toString tc = "\"" ++ str ++ "\""
| Right list <- toList tc = "[" ++ intercalate ", " (map decodeResult list) ++ "]"
| otherwise = formatResult TreeCalculus tc
handleSave :: Env -> EvaluatedForm -> InputT IO ()
handleSave env form = do
let fset = setComplete completeFilename defaultSettings
path <- runInputT fset $
getInputLineWithInitial "File to save < " ("", "")
case path of
Nothing -> do
outputStrLn "Save cancelled"
loop env form
Just p -> do
let definitions = Map.toList $ Map.delete "!result" env
filepath = strip p
outputStrLn "Starting save..."
liftIO $ writeFile filepath ""
outputStrLn "File created..."
forM_ definitions $ \(name, value) -> do
let content = name ++ " = " ++ formatResult TreeCalculus value ++ "\n"
outputStrLn $ "Writing definition: " ++ name ++ " with length " ++ show (length content)
liftIO $ appendFile filepath content
outputStrLn $ "Saved " ++ show (length definitions) ++ " definitions to " ++ p
loop env form

View File

@ -1,6 +1,5 @@
module Research where
import Control.Monad.State
import Data.List (intercalate)
import Data.Map (Map)
import Data.Text (Text, replace)
@ -19,47 +18,59 @@ data TricuAST
| SInt Int
| SStr String
| SList [TricuAST]
| SFunc String [String] TricuAST
| SDef String [String] TricuAST
| SApp TricuAST TricuAST
| TLeaf
| TStem TricuAST
| TFork TricuAST TricuAST
| SLambda [String] TricuAST
| SEmpty
| SImport String String
deriving (Show, Eq, Ord)
-- Lexer Tokens
data LToken
= LKeywordT
| LIdentifier String
| LNamespace String
| LIntegerLiteral Int
| LStringLiteral String
| LAssign
| LColon
| LBackslash
| LDot
| LOpenParen
| LCloseParen
| LOpenBracket
| LCloseBracket
| LNewline
| LImport String String
deriving (Show, Eq, Ord)
-- Output formats
data EvaluatedForm = TreeCalculus | FSL | AST | Ternary | Ascii
data EvaluatedForm = TreeCalculus | FSL | AST | Ternary | Ascii | Decode
deriving (Show, Data, Typeable)
-- Environment containing previously evaluated TC terms
type Env = Map.Map String T
type Env = Map.Map String T
-- Tree Calculus Reduction
-- Tree Calculus Reduction Rules
{-
The t operator is left associative.
1. t t a b -> a
2. t (t a) b c -> a c (b c)
3a. t (t a b) c t -> a
3b. t (t a b) c (t u) -> b u
3c. t (t a b) c (t u v) -> c u v
-}
apply :: T -> T -> T
apply Leaf b = Stem b
apply (Stem a) b = Fork a b
apply (Fork Leaf a) _ = a
apply (Fork (Stem a1) a2) b = apply (apply a1 b) (apply a2 b)
apply (Fork (Fork a1 a2) a3) Leaf = a1
apply (Fork (Fork a1 a2) a3) (Stem u) = apply a2 u
apply (Fork (Fork a1 a2) a3) (Fork u v) = apply (apply a3 u) v
apply (Fork Leaf a) _ = a
apply (Fork (Stem a) b) c = apply (apply a c) (apply b c)
apply (Fork (Fork a b) c) Leaf = a
apply (Fork (Fork a b) c) (Stem u) = apply b u
apply (Fork (Fork a b) c) (Fork u v) = apply (apply c u) v
-- Left associative `t`
apply Leaf b = Stem b
apply (Stem a) b = Fork a b
-- Booleans
_false :: T
@ -73,7 +84,7 @@ _not = Fork (Fork _true (Fork Leaf _false)) Leaf
-- Marshalling
ofString :: String -> T
ofString str = ofList (map ofNumber (map fromEnum str))
ofString str = ofList $ map (ofNumber . fromEnum) str
ofNumber :: Int -> T
ofNumber 0 = Leaf
@ -83,8 +94,7 @@ ofNumber n =
(ofNumber (n `div` 2))
ofList :: [T] -> T
ofList [] = Leaf
ofList (x:xs) = Fork x (ofList xs)
ofList = foldr Fork Leaf
toNumber :: T -> Either String Int
toNumber Leaf = Right 0
@ -115,13 +125,14 @@ formatResult FSL = show
formatResult AST = show . toAST
formatResult Ternary = toTernaryString
formatResult Ascii = toAscii
formatResult Decode = decodeResult
toSimpleT :: String -> String
toSimpleT s = T.unpack
toSimpleT s = T.unpack
$ replace "Fork" "t"
$ replace "Stem" "t"
$ replace "Leaf" "t"
$ (T.pack s)
$ T.pack s
toTernaryString :: T -> String
toTernaryString Leaf = "0"
@ -147,4 +158,19 @@ toAscii tree = go tree "" True
++ go left (prefix ++ (if isLast then " " else "| ")) False
++ go right (prefix ++ (if isLast then " " else "| ")) True
-- Utility
decodeResult :: T -> String
decodeResult Leaf = "t"
decodeResult tc =
case (toString tc, toList tc, toNumber tc) of
(Right s, _, _) | all isCommonChar s -> "\"" ++ s ++ "\""
(_, _, Right n) -> show n
(_, Right xs@(_:_), _) -> "[" ++ intercalate ", " (map decodeResult xs) ++ "]"
(_, Right [], _) -> "[]"
_ -> formatResult TreeCalculus tc
where
isCommonChar c =
let n = fromEnum c
in (n >= 32 && n <= 126)
|| n == 9
|| n == 10
|| n == 13

View File

@ -7,12 +7,13 @@ import Parser
import REPL
import Research
import Control.Exception (evaluate, try, SomeException)
import Control.Exception (evaluate, try, SomeException)
import Control.Monad.IO.Class (liftIO)
import Data.List (isInfixOf)
import Test.Tasty
import Test.Tasty.HUnit
import Test.Tasty.QuickCheck
import Text.Megaparsec (runParser)
import Text.Megaparsec (runParser)
import qualified Data.Map as Map
import qualified Data.Set as Set
@ -25,16 +26,19 @@ runTricu s = show $ result (evalTricu Map.empty $ parseTricu s)
tests :: TestTree
tests = testGroup "Tricu Tests"
[ lexerTests
, parserTests
, evaluationTests
, lambdaEvalTests
, libraryTests
, fileEvaluationTests
[ lexer
, parser
, simpleEvaluation
, lambdas
, providedLibraries
, fileEval
, modules
, demos
, decoding
]
lexerTests :: TestTree
lexerTests = testGroup "Lexer Tests"
lexer :: TestTree
lexer = testGroup "Lexer Tests"
[ testCase "Lex simple identifiers" $ do
let input = "x a b = a"
expect = Right [LIdentifier "x", LIdentifier "a", LIdentifier "b", LAssign, LIdentifier "a"]
@ -47,7 +51,22 @@ lexerTests = testGroup "Lexer Tests"
, testCase "Lex escaped characters in strings" $ do
let input = "\"hello\\nworld\""
expect = Right [LStringLiteral "hello\\nworld"]
expect = Right [LStringLiteral "hello\nworld"]
runParser tricuLexer "" input @?= expect
, testCase "Lex multiple escaped characters in strings" $ do
let input = "\"tab:\\t newline:\\n quote:\\\" backslash:\\\\\""
expect = Right [LStringLiteral "tab:\t newline:\n quote:\" backslash:\\"]
runParser tricuLexer "" input @?= expect
, testCase "Lex escaped characters in string literals" $ do
let input = "x = \"line1\\nline2\\tindented\""
expect = Right [LIdentifier "x", LAssign, LStringLiteral "line1\nline2\tindented"]
runParser tricuLexer "" input @?= expect
, testCase "Lex empty string with escape sequence" $ do
let input = "\"\\\"\""
expect = Right [LStringLiteral "\""]
runParser tricuLexer "" input @?= expect
, testCase "Lex mixed literals" $ do
@ -69,13 +88,13 @@ lexerTests = testGroup "Lexer Tests"
Right i -> i @?= expect
, testCase "Error when using invalid characters in identifiers" $ do
case (runParser tricuLexer "" "__result = 5") of
case (runParser tricuLexer "" "!result = 5") of
Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of __result"
Right _ -> assertFailure "Expected failure when trying to assign the value of !result"
]
parserTests :: TestTree
parserTests = testGroup "Parser Tests"
parser :: TestTree
parser = testGroup "Parser Tests"
[ testCase "Error when assigning a value to T" $ do
let tokens = lexTricu "t = x"
case parseSingleExpr tokens of
@ -83,8 +102,8 @@ parserTests = testGroup "Parser Tests"
Right _ -> assertFailure "Expected failure when trying to assign the value of T"
, testCase "Parse function definitions" $ do
let input = "x = (\\a b c : a)"
expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
let input = "x = (a b c : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
parseSingle input @?= expect
, testCase "Parse nested Tree Calculus terms" $ do
@ -103,8 +122,8 @@ parserTests = testGroup "Parser Tests"
parseSingle input @?= expect
, testCase "Parse function with applications" $ do
let input = "f = (\\x : t x)"
expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
let input = "f = (x : t x)"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
parseSingle input @?= expect
, testCase "Parse nested lists" $ do
@ -145,23 +164,23 @@ parserTests = testGroup "Parser Tests"
parseSingle input @?= expect
, testCase "Parse nested parentheses in function body" $ do
let input = "f = (\\x : t (t (t t)))"
expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
let input = "f = (x : t (t (t t)))"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
parseSingle input @?= expect
, testCase "Parse lambda abstractions" $ do
let input = "(\\a : a)"
let input = "(a : a)"
expect = (SLambda ["a"] (SVar "a"))
parseSingle input @?= expect
, testCase "Parse multiple arguments to lambda abstractions" $ do
let input = "x = (\\a b : a)"
expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
let input = "x = (a b : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
parseSingle input @?= expect
, testCase "Grouping T terms with parentheses in function application" $ do
let input = "x = (\\a : a)\nx (t)"
expect = [SFunc "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
let input = "x = (a : a)\nx (t)"
expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
parseTricu input @?= expect
, testCase "Comments 1" $ do
@ -175,8 +194,8 @@ parserTests = testGroup "Parser Tests"
parseTricu input @?= expect
]
evaluationTests :: TestTree
evaluationTests = testGroup "Evaluation Tests"
simpleEvaluation :: TestTree
simpleEvaluation = testGroup "Evaluation Tests"
[ testCase "Evaluate single Leaf" $ do
let input = "t"
let ast = parseSingle input
@ -244,7 +263,7 @@ evaluationTests = testGroup "Evaluation Tests"
(result env) @?= (Stem (Stem Leaf))
, testCase "Evaluate variable shadowing" $ do
, testCase "Immutable definitions" $ do
let input = "x = t t\nx = t\nx"
env = evalTricu Map.empty (parseTricu input)
result <- try (evaluate (runTricu input)) :: IO (Either SomeException String)
@ -255,229 +274,197 @@ evaluationTests = testGroup "Evaluation Tests"
, testCase "Apply identity to Boolean Not" $ do
let not = "(t (t (t t) (t t t)) t)"
let input = "x = (\\a : a)\nx " ++ not
let input = "x = (a : a)\nx " ++ not
env = evalTricu Map.empty (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
]
lambdaEvalTests :: TestTree
lambdaEvalTests = testGroup "Lambda Evaluation Tests"
lambdas :: TestTree
lambdas = testGroup "Lambda Evaluation Tests"
[ testCase "Lambda Identity Function" $ do
let input = "id = (\\x : x)\nid t"
let input = "id = (x : x)\nid t"
runTricu input @?= "Leaf"
, testCase "Lambda Constant Function (K combinator)" $ do
let input = "k = (\\x y : x)\nk t (t t)"
let input = "k = (x y : x)\nk t (t t)"
runTricu input @?= "Leaf"
, testCase "Lambda Application with Variable" $ do
let input = "id = (\\x : x)\nval = t t\nid val"
let input = "id = (x : x)\nval = t t\nid val"
runTricu input @?= "Stem Leaf"
, testCase "Lambda Application with Multiple Arguments" $ do
let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)"
let input = "apply = (f x y : f x y)\nk = (a b : a)\napply k t (t t)"
runTricu input @?= "Leaf"
, testCase "Nested Lambda Application" $ do
let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t"
let input = "apply = (f x y : f x y)\nid = (x : x)\napply (f x : f x) id t"
runTricu input @?= "Leaf"
, testCase "Lambda with a complex body" $ do
let input = "f = (\\x : t (t x))\nf t"
let input = "f = (x : t (t x))\nf t"
runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda returning a function" $ do
let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)"
let input = "f = (x : (y : x))\ng = f t\ng (t t)"
runTricu input @?= "Leaf"
, testCase "Lambda with Shadowing" $ do
let input = "f = (\\x : (\\x : x))\nf t (t t)"
let input = "f = (x : (x : x))\nf t (t t)"
runTricu input @?= "Stem Leaf"
, testCase "Lambda returning another lambda" $ do
let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)"
let input = "k = (x : (y : x))\nk_app = k t\nk_app (t t)"
runTricu input @?= "Leaf"
, testCase "Lambda with free variables" $ do
let input = "y = t t\nf = (\\x : y)\nf t"
let input = "y = t t\nf = (x : y)\nf t"
runTricu input @?= "Stem Leaf"
, testCase "SKI Composition" $ do
let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)"
let input = "s = (x y z : x z (y z))\nk = (x y : x)\ni = (x : x)\ncomp = s k i\ncomp t (t t)"
runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda with multiple parameters and application" $ do
let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)"
let input = "f = (a b c : t a b c)\nf t (t t) (t t t)"
runTricu input @?= "Stem Leaf"
, testCase "Lambda with nested application in the body" $ do
let input = "f = (\\x : t (t (t x)))\nf t"
let input = "f = (x : t (t (t x)))\nf t"
runTricu input @?= "Stem (Stem (Stem Leaf))"
, testCase "Lambda returning a function and applying it" $ do
let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)"
let input = "f = (x : (y : t x y))\ng = f t\ng (t t)"
runTricu input @?= "Fork Leaf (Stem Leaf)"
, testCase "Lambda applying a variable" $ do
let input = "id = (\\x : x)\na = t t\nid a"
let input = "id = (x : x)\na = t t\nid a"
runTricu input @?= "Stem Leaf"
, testCase "Nested lambda abstractions in the same expression" $ do
let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t"
let input = "f = (x : (y : x y))\ng = (z : z)\nf g t"
runTricu input @?= "Leaf"
, testCase "Lambda with a string literal" $ do
let input = "f = (\\x : x)\nf \"hello\""
, testCase "Lambda applied to string literal" $ do
let input = "f = (x : x)\nf \"hello\""
runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
, testCase "Lambda with an integer literal" $ do
let input = "f = (\\x : x)\nf 42"
, testCase "Lambda applied to integer literal" $ do
let input = "f = (x : x)\nf 42"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
, testCase "Lambda with a list literal" $ do
let input = "f = (\\x : x)\nf [t (t t)]"
, testCase "Lambda applied to list literal" $ do
let input = "f = (x : x)\nf [t (t t)]"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
, testCase "Lambda containing list literal" $ do
let input = "(a : [(a)]) 1"
runTricu input @?= "Fork (Fork (Stem Leaf) Leaf) Leaf"
]
libraryTests :: TestTree
libraryTests = testGroup "Library Tests"
[ testCase "K combinator 1" $ do
library <- evaluateFile "./lib/base.tri"
let input = "k (t) (t t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "K combinator 2" $ do
library <- evaluateFile "./lib/base.tri"
let input = "k (t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "K combinator 3" $ do
library <- evaluateFile "./lib/base.tri"
let input = "k (t t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf
, testCase "S combinator" $ do
library <- evaluateFile "./lib/base.tri"
let input = "s (t) (t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf (Stem Leaf)
, testCase "SKK == I (fully expanded)" $ do
library <- evaluateFile "./lib/base.tri"
let input = "s k k"
env = evalTricu library (parseTricu input)
result env @?= Fork (Stem (Stem Leaf)) (Stem Leaf)
, testCase "I combinator" $ do
library <- evaluateFile "./lib/base.tri"
let input = "i not?"
env = evalTricu library (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) (Fork Leaf (Fork Leaf Leaf))
, testCase "Triage test Leaf" $ do
library <- evaluateFile "./lib/base.tri"
providedLibraries :: TestTree
providedLibraries = testGroup "Library Tests"
[ testCase "Triage test Leaf" $ do
library <- evaluateFile "./lib/list.tri"
let input = "test t"
env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Leaf\""
, testCase "Triage test (Stem Leaf)" $ do
library <- evaluateFile "./lib/base.tri"
library <- evaluateFile "./lib/list.tri"
let input = "test (t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Stem\""
, testCase "Triage test (Fork Leaf Leaf)" $ do
library <- evaluateFile "./lib/base.tri"
library <- evaluateFile "./lib/list.tri"
let input = "test (t t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Fork\""
, testCase "Boolean NOT: true" $ do
library <- evaluateFile "./lib/base.tri"
library <- evaluateFile "./lib/list.tri"
let input = "not? true"
env = result $ evalTricu library (parseTricu input)
env @?= Leaf
, testCase "Boolean NOT: false" $ do
library <- evaluateFile "./lib/base.tri"
library <- evaluateFile "./lib/list.tri"
let input = "not? false"
env = result $ evalTricu library (parseTricu input)
env @?= Stem Leaf
, testCase "Boolean AND TF" $ do
library <- evaluateFile "./lib/base.tri"
library <- evaluateFile "./lib/list.tri"
let input = "and? (t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "Boolean AND FT" $ do
library <- evaluateFile "./lib/base.tri"
library <- evaluateFile "./lib/list.tri"
let input = "and? (t) (t t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "Boolean AND FF" $ do
library <- evaluateFile "./lib/base.tri"
library <- evaluateFile "./lib/list.tri"
let input = "and? (t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "Boolean AND TT" $ do
library <- evaluateFile "./lib/base.tri"
library <- evaluateFile "./lib/list.tri"
let input = "and? (t t) (t t)"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "List head" $ do
library <- evaluateFile "./lib/base.tri"
library <- evaluateFile "./lib/list.tri"
let input = "head [(t) (t t) (t t t)]"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "List tail" $ do
library <- evaluateFile "./lib/base.tri"
library <- evaluateFile "./lib/list.tri"
let input = "head (tail (tail [(t) (t t) (t t t)]))"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf
, testCase "List map" $ do
library <- evaluateFile "./lib/base.tri"
let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))"
library <- evaluateFile "./lib/list.tri"
let input = "head (tail (map (a : (t t t)) [(t) (t) (t)]))"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf
, testCase "Empty list check" $ do
library <- evaluateFile "./lib/base.tri"
library <- evaluateFile "./lib/list.tri"
let input = "emptyList? []"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "Non-empty list check" $ do
library <- evaluateFile "./lib/base.tri"
library <- evaluateFile "./lib/list.tri"
let input = "not? (emptyList? [(1) (2) (3)])"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "Concatenate strings" $ do
library <- evaluateFile "./lib/base.tri"
let input = "lconcat \"Hello, \" \"world!\""
library <- evaluateFile "./lib/list.tri"
let input = "append \"Hello, \" \"world!\""
env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Hello, world!\""
, testCase "Verifying Equality" $ do
library <- evaluateFile "./lib/base.tri"
library <- evaluateFile "./lib/list.tri"
let input = "equal? (t t t) (t t t)"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
]
fileEvaluationTests :: TestTree
fileEvaluationTests = testGroup "Evaluation tests"
fileEval :: TestTree
fileEval = testGroup "File evaluation tests"
[ testCase "Forks" $ do
res <- liftIO $ evaluateFileResult "./test/fork.tri"
res @?= Fork Leaf Leaf
@ -487,11 +474,99 @@ fileEvaluationTests = testGroup "Evaluation tests"
res @?= Fork (Stem Leaf) Leaf
, testCase "Mapping and Equality" $ do
res <- liftIO $ evaluateFileResult "./test/map.tri"
res @?= Stem Leaf
library <- liftIO $ evaluateFile "./lib/list.tri"
fEnv <- liftIO $ evaluateFileWithContext library "./test/map.tri"
(mainResult fEnv) @?= Stem Leaf
, testCase "Eval and decoding string" $ do
library <- liftIO $ evaluateFile "./lib/base.tri"
library <- liftIO $ evaluateFile "./lib/list.tri"
res <- liftIO $ evaluateFileWithContext library "./test/string.tri"
decodeResult (result res) @?= "\"String test!\""
]
modules :: TestTree
modules = testGroup "Test modules"
[ testCase "Detect cyclic dependencies" $ do
result <- try (liftIO $ evaluateFileResult "./test/cycle-1.tri") :: IO (Either SomeException T)
case result of
Left e -> do
let errorMsg = show e
if "Encountered cyclic import" `isInfixOf` errorMsg
then return ()
else assertFailure $ "Unexpected error: " ++ errorMsg
Right _ -> assertFailure "Expected cyclic dependencies"
, testCase "Module imports and namespacing" $ do
res <- liftIO $ evaluateFileResult "./test/namespace-A.tri"
res @?= Leaf
, testCase "Multiple imports" $ do
res <- liftIO $ evaluateFileResult "./test/vars-A.tri"
res @?= Leaf
, testCase "Error on unresolved variable" $ do
result <- try (liftIO $ evaluateFileResult "./test/unresolved-A.tri") :: IO (Either SomeException T)
case result of
Left e -> do
let errorMsg = show e
if "undefinedVar" `isInfixOf` errorMsg
then return ()
else assertFailure $ "Unexpected error: " ++ errorMsg
Right _ -> assertFailure "Expected unresolved variable error"
, testCase "Multi-level imports" $ do
res <- liftIO $ evaluateFileResult "./test/multi-level-A.tri"
res @?= Leaf
, testCase "Lambda expression namespaces" $ do
res <- liftIO $ evaluateFileResult "./test/lambda-A.tri"
res @?= Leaf
, testCase "Local namespace import chain" $ do
res <- liftIO $ evaluateFileResult "./test/local-ns/1.tri"
res @?= Fork (Stem Leaf) (Fork (Stem Leaf) Leaf)
]
-- All of our demo tests are also module tests
demos :: TestTree
demos = testGroup "Test provided demo functionality"
[ testCase "Structural equality demo" $ do
res <- liftIO $ evaluateFileResult "./demos/equality.tri"
decodeResult res @?= "t t"
, testCase "Convert values back to source code demo" $ do
res <- liftIO $ evaluateFileResult "./demos/toSource.tri"
decodeResult res @?= "\"(t (t (t t) (t t t)) (t t (t t t)))\""
, testCase "Determining the size of functions" $ do
res <- liftIO $ evaluateFileResult "./demos/size.tri"
decodeResult res @?= "454"
, testCase "Level Order Traversal demo" $ do
res <- liftIO $ evaluateFileResult "./demos/levelOrderTraversal.tri"
decodeResult res @?= "\"\n1 \n2 3 \n4 5 6 7 \n8 11 10 9 12 \""
]
decoding :: TestTree
decoding = testGroup "Decoding Tests"
[ testCase "Decode Leaf" $ do
decodeResult Leaf @?= "t"
, testCase "Decode list of non-ASCII numbers" $ do
let input = ofList [ofNumber 1, ofNumber 14, ofNumber 6]
decodeResult input @?= "[1, 14, 6]"
, testCase "Decode list of ASCII numbers as a string" $ do
let input = ofList [ofNumber 97, ofNumber 98, ofNumber 99]
decodeResult input @?= "\"abc\""
, testCase "Decode small number" $ do
decodeResult (ofNumber 42) @?= "42"
, testCase "Decode large number" $ do
decodeResult (ofNumber 9999) @?= "9999"
, testCase "Decode string in list" $ do
let input = ofList [ofString "hello", ofString "world"]
decodeResult input @?= "[\"hello\", \"world\"]"
, testCase "Decode mixed list with strings" $ do
let input = ofList [ofString "hello", ofNumber 42, ofString "world"]
decodeResult input @?= "[\"hello\", 42, \"world\"]"
, testCase "Decode nested lists with strings" $ do
let input = ofList [ofList [ofString "nested"], ofString "string"]
decodeResult input @?= "[[\"nested\"], \"string\"]"
]

View File

@ -1 +0,0 @@
t (t (t (t (t t) (t t t)) t) t t) t

View File

@ -1 +0,0 @@
x = t (t t) t

View File

@ -1,9 +1,9 @@
-- This is a tricu comment!
-- t (t t) (t (t t t))
-- t (t t t) (t t)
-- x = (\a : a)
t (t t) t -- Fork (Stem Leaf) Leaf
-- x = (a : a)
main = t (t t) t -- Fork (Stem Leaf) Leaf
-- t t
-- x
-- x = (\a : a)
-- x = (a : a)
-- t

4
test/cycle-1.tri Normal file
View File

@ -0,0 +1,4 @@
!import "cycle-2.tri" Cycle2
cycle1 = t Cycle2.cycle2

4
test/cycle-2.tri Normal file
View File

@ -0,0 +1,4 @@
!import "cycle-1.tri" Cycle1
cycle2 = t Cycle1.cycle1

View File

@ -1 +1 @@
t t t
main = t t t

1
test/lambda-A.tri Normal file
View File

@ -0,0 +1 @@
main = (x : x) t

4
test/local-ns/1.tri Normal file
View File

@ -0,0 +1,4 @@
!import "2.tri" Two
main = Two.x

2
test/local-ns/2.tri Normal file
View File

@ -0,0 +1,2 @@
!import "3.tri" !Local

1
test/local-ns/3.tri Normal file
View File

@ -0,0 +1 @@
x = 3

View File

@ -1,24 +1,2 @@
false = t
true = t t
_ = t
k = t t
i = t (t k) t
s = t (t (k t)) t
m = s i i
b = s (k s) k
c = s (s (k s) (s (k k) s)) (k k)
iC = (\a b c : s a (k c) b)
yi = (\i : b m (c b (i m)))
y = yi iC
triage = (\a b c : t (t a b) c)
pair = t
matchList = (\oe oc : triage oe _ oc)
lconcat = y (\self : matchList (\k : k) (\h r k : pair h (self r k)))
hmap = y (\self : matchList (\f : t) (\hd tl f : pair (f hd) (self tl f)))
map = (\f l : hmap l f)
lAnd = triage (\x : false) (\_ x : x) (\_ _ x : x)
lOr = triage (\x : x) (\_ _ : true) (\_ _ x : true)
equal = y (\self : triage (triage true (\z : false) (\y z : false)) (\ax : triage false (self ax) (\y z : false)) (\ax ay : triage false (\z : false) (\bx by : lAnd (self ax bx) (self ay by))))
x = map (\i : lconcat "Successfully concatenated " i) [("two strings!")]
equal x [("Successfully concatenated two strings!")]
x = map (i : append "Successfully concatenated " i) [("two strings!")]
main = equal? x [("Successfully concatenated two strings!")]

2
test/multi-level-A.tri Normal file
View File

@ -0,0 +1,2 @@
!import "multi-level-B.tri" B
main = B.main

2
test/multi-level-B.tri Normal file
View File

@ -0,0 +1,2 @@
!import "multi-level-C.tri" C
main = C.val

1
test/multi-level-C.tri Normal file
View File

@ -0,0 +1 @@
val = t

7
test/named-imports/1.tri Normal file
View File

@ -0,0 +1,7 @@
!import "lib/base.tri"
!import "test/named-imports/2.tri"
!import "test/named-imports/3.tri" ThreeRenamed
main = equal? (equal? Two.x 2) (equal? ThreeRenamed.x 3)

2
test/named-imports/2.tri Normal file
View File

@ -0,0 +1,2 @@
x = 2

2
test/named-imports/3.tri Normal file
View File

@ -0,0 +1,2 @@
x = 3

2
test/namespace-A.tri Normal file
View File

@ -0,0 +1,2 @@
!import "namespace-B.tri" B
main = B.x

1
test/namespace-B.tri Normal file
View File

@ -0,0 +1 @@
x = t

21
test/size.tri Normal file
View File

@ -0,0 +1,21 @@
compose = f g x : f (g x)
succ = y (self :
triage
1
t
(triage
(t (t t))
(_ tail : t t (self tail))
t))
size = (x :
(y (self x :
compose succ
(triage
(x : x)
self
(x y : compose (self x) (self y))
x)) x 0))
size size

View File

@ -1 +1 @@
head (map (\i : lconcat "String " i) [("test!")])
head (map (i : append "String " i) [("test!")])

1
test/unresolved-A.tri Normal file
View File

@ -0,0 +1 @@
main = undefinedVar

6
test/vars-A.tri Normal file
View File

@ -0,0 +1,6 @@
!import "vars-B.tri" B
!import "vars-C.tri" C
main = B.y (C.z)

1
test/vars-B.tri Normal file
View File

@ -0,0 +1 @@
y = x : x

1
test/vars-C.tri Normal file
View File

@ -0,0 +1 @@
z = t

View File

@ -1,7 +1,7 @@
cabal-version: 1.12
name: tricu
version: 0.7.0
version: 0.18.1
description: A micro-language for exploring Tree Calculus
author: James Eversole
maintainer: james@eversole.co
@ -26,10 +26,13 @@ executable tricu
base >=4.7
, cmdargs
, containers
, exceptions
, filepath
, haskeline
, megaparsec
, mtl
, text
, transformers
other-modules:
Eval
FileEval
@ -52,6 +55,8 @@ test-suite tricu-tests
base
, cmdargs
, containers
, exceptions
, filepath
, haskeline
, megaparsec
, mtl
@ -59,6 +64,7 @@ test-suite tricu-tests
, tasty-hunit
, tasty-quickcheck
, text
, transformers
default-language: Haskell2010
other-modules:
Eval