Compare commits

...

12 Commits
0.15.0 ... main

Author SHA1 Message Date
3717942589 Clean up and list SKI conversion fix 2025-04-24 12:14:38 -05:00
b8e2743103 Updates to demos 2025-04-16 14:23:53 -05:00
25bfe139e8 String escaping using backslash 2025-04-15 10:52:53 -05:00
f2beb86d8a Drop backslash from lambda definitions 2025-04-15 10:34:38 -05:00
5024a2be4c Revert flake.nix 2025-02-08 10:24:14 -06:00
fccee3e61c Static linking part 2 2025-02-07 19:22:31 -06:00
ad1918aa6f Statically link binaries 2025-02-07 18:32:09 -06:00
0a505172b4 Adds several new REPL utilities
Also removes some broken list library functions
2025-02-07 18:25:11 -06:00
e6e18239a7 Smarter decoding of terms
This update includes an update to `decodeResult` that makes string
decoding far less aggressive. This also replaces the `!decode` REPL
command with `!output` to allow users to switch output format on the
fly. New tests are included for verifying decoding behavior; this group
needs to be fleshed out further.
2025-02-07 15:06:25 -06:00
871245b567 Lint cleanup and README updates 2025-02-07 12:37:27 -06:00
30b9505d5f Clearer definition for apply 2025-02-06 08:32:17 -06:00
f4e50353ed Support for list literals in Lambdas 2025-02-02 12:08:08 -06:00
23 changed files with 616 additions and 373 deletions

@ -11,12 +11,11 @@ tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)
## Features ## Features
- Tree Calculus operator: `t` - Tree Calculus operator: `t`
- Assignments: `x = t t` - Immutable definitions: `x = t t`
- Immutable definitions - Lambda abstraction: `id = (a : a)`
- Lambda abstraction syntax: `id = (\a : a)`
- List, Number, and String literals: `[(2) ("Hello")]` - List, Number, and String literals: `[(2) ("Hello")]`
- Function application: `not (not false)` - Function application: `not (not false)`
- Higher order/first-class functions: `map (\a : append a "!") [("Hello")]` - Higher order/first-class functions: `map (a : append a "!") [("Hello")]`
- Intensionality blurs the distinction between functions and data (see REPL examples) - Intensionality blurs the distinction between functions and data (see REPL examples)
- Simple module system for code organization - Simple module system for code organization
@ -24,15 +23,15 @@ tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)
``` ```
tricu < -- Anything after `--` on a single line is a comment tricu < -- Anything after `--` on a single line is a comment
tricu < id = (\a : a) -- Lambda abstraction is eliminated to tree calculus terms tricu < id = (a : a) -- Lambda abstraction is eliminated to tree calculus terms
tricu < head (map (\i : append i " world!") [("Hello, ")]) tricu < head (map (i : append i " world!") [("Hello, ")])
tricu > "Hello, world!" tricu > "Hello, world!"
tricu < id (head (map (\i : append i " world!") [("Hello, ")])) tricu < id (head (map (i : append i " world!") [("Hello, ")]))
tricu > "Hello, world!" tricu > "Hello, world!"
tricu < -- Intensionality! We can inspect the structure of a function or data. tricu < -- Intensionality! We can inspect the structure of a function or data.
tricu < triage = (\a b c : t (t a b) c) tricu < triage = (a b c : t (t a b) c)
tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork") tricu < test = triage "Leaf" (z : "Stem") (a b : "Fork")
tricu < test (t t) tricu < test (t t)
tricu > "Stem" tricu > "Stem"
tricu < -- We can even convert a term back to source code (/demos/toSource.tri) tricu < -- We can even convert a term back to source code (/demos/toSource.tri)
@ -41,13 +40,21 @@ tricu > "(t (t (t t) (t t t)) (t t (t t t)))"
tricu < -- or calculate its size (/demos/size.tri) tricu < -- or calculate its size (/demos/size.tri)
tricu < size not? tricu < size not?
tricu > 12 tricu > 12
tricu < -- REPL Commands:
tricu < !definitions -- Lists all available definitions
tricu < !output -- Change output format (Tree, FSL, AST, etc.)
tricu < !import -- Import definitions from a file
tricu < !exit -- Exit the REPL
tricu < !clear -- ANSI screen clear
tricu < !save -- Save all REPL definitions to a file that you can !import
tricu < !reset -- Clear all REPL definitions
tricu < !version -- Print tricu version
``` ```
## Installation and Use ## Installation and Use
[Releases are available for Linux.](https://git.eversole.co/James/tricu/releases) You can easily build and run this project using [Nix](https://nixos.org/download/).
Or you can easily build and run this project using [Nix](https://nixos.org/download/).
- Quick Start (REPL): - Quick Start (REPL):
- `nix run git+https://git.eversole.co/James/tricu` - `nix run git+https://git.eversole.co/James/tricu`
@ -84,6 +91,12 @@ tricu decode [OPTIONS]
Defaults to stdin. Defaults to stdin.
``` ```
## Collaborating
I am happy to accept issue reports, pull requests, or questions about tricu [via email](mailto:james@eversole.co).
If you want to collaborate but don't want to email back-and-forth, please reach out via email once to let me know and I will provision a git.eversole.co account for you.
## Acknowledgements ## Acknowledgements
Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog). Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog).

@ -11,20 +11,17 @@ demo_true = t t
not_TC? = t (t (t t) (t t t)) (t t (t t t)) not_TC? = t (t (t t) (t t t)) (t t (t t t))
-- /demos/toSource.tri contains an explanation of `triage` -- /demos/toSource.tri contains an explanation of `triage`
demo_triage = \a b c : t (t a b) c demo_triage = a b c : t (t a b) c
demo_matchBool = (\ot of : demo_triage demo_matchBool = a b : demo_triage b (_ : a) (_ _ : a)
of
(\_ : ot)
(\_ _ : ot)
)
-- Lambda representation of the Boolean `not` function -- Lambda representation of the Boolean `not` function
not_Lambda? = demo_matchBool demo_false demo_true not_Lambda? = demo_matchBool demo_false demo_true
-- Since tricu eliminates Lambda terms to SKI combinators, the tree form of many -- As tricu eliminates Lambda terms to SKI combinators, the tree form of many
-- functions defined via Lambda terms are larger than the most efficient TC -- functions defined via Lambda terms are larger than the most efficient TC
-- representation. Between different languages that evaluate to tree calculus -- representation possible. Between different languages that evaluate to tree
-- terms, the exact implementation of Lambda elimination may differ and lead -- calculus terms, the exact implementation of Lambda elimination may differ
-- to different tree representations even if they share extensional behavior. -- and lead to different trees even if they share extensional behavior.
-- Let's see if these are the same: -- Let's see if these are the same:
lambdaEqualsTC = equal? not_TC? not_Lambda? lambdaEqualsTC = equal? not_TC? not_Lambda?

@ -18,47 +18,47 @@ main = exampleTwo
-- / / \ -- / / \
-- 4 5 6 -- 4 5 6
label = \node : head node label = node : head node
left = (\node : if (emptyList? node) left = node : (if (emptyList? node)
[] []
(if (emptyList? (tail node)) (if (emptyList? (tail node))
[] []
(head (tail node)))) (head (tail node))))
right = (\node : if (emptyList? node) right = node : (if (emptyList? node)
[] []
(if (emptyList? (tail node)) (if (emptyList? (tail node))
[] []
(if (emptyList? (tail (tail node))) (if (emptyList? (tail (tail node)))
[] []
(head (tail (tail node)))))) (head (tail (tail node))))))
processLevel = y (\self queue : if (emptyList? queue) processLevel = y (self queue : if (emptyList? queue)
[] []
(pair (map label queue) (self (filter (pair (map label queue) (self (filter
(\node : not? (emptyList? node)) (node : not? (emptyList? node))
(append (map left queue) (map right queue)))))) (append (map left queue) (map right queue))))))
levelOrderTraversal_ = \a : processLevel (t a t) levelOrderTraversal_ = a : processLevel (t a t)
toLineString = y (\self levels : if (emptyList? levels) toLineString = y (self levels : if (emptyList? levels)
"" ""
(append (append
(append (map (\x : append x " ") (head levels)) "") (append (map (x : append x " ") (head levels)) "")
(if (emptyList? (tail levels)) "" (append (t (t 10 t) t) (self (tail levels)))))) (if (emptyList? (tail levels)) "" (append (t (t 10 t) t) (self (tail levels))))))
levelOrderToString = \s : toLineString (levelOrderTraversal_ s) levelOrderToString = s : toLineString (levelOrderTraversal_ s)
flatten = foldl (\acc x : append acc x) "" flatten = foldl (acc x : append acc x) ""
levelOrderTraversal = \s : append (t 10 t) (flatten (levelOrderToString s)) levelOrderTraversal = s : append (t 10 t) (flatten (levelOrderToString s))
exampleOne = levelOrderTraversal [("1") exampleOne = levelOrderTraversal [("1")
[("2") [("4") t t] t] [("2") [("4") t t] t]
[("3") [("5") t t] [("6") t t]]] [("3") [("5") t t] [("6") t t]]]
exampleTwo = levelOrderTraversal [("1") exampleTwo = levelOrderTraversal [("1")
[("2") [("4") [("8") t t] [("9") t t]] [("2") [("4") [("8") t t] [("9") t t]]
[("6") [("10") t t] [("12") t t]]] [("6") [("10") t t] [("12") t t]]]
[("3") [("5") [("11") t t] t] [("7") t t]]] [("3") [("5") [("11") t t] t] [("7") t t]]]

37
demos/patternMatching.tri Normal file

@ -0,0 +1,37 @@
!import "../lib/patterns.tri" !Local
-- We can do conditional pattern matching by providing a list of lists, where
-- each sublist contains a boolean expression and a function to return if said
-- boolean expression evaluates to true.
value = 42
main = match value [[(equal? "Hello") (_ : ", world!")] [(equal? 42) (_ : "The answer.")]]
-- < main
-- > "The answer."
matchExample = (x : match x
[[(equal? 1) (_ : "one")]
[(equal? 2) (_ : "two")]
[(equal? 3) (_ : "three")]
[(equal? 4) (_ : "four")]
[(equal? 5) (_ : "five")]
[(equal? 6) (_ : "six")]
[(equal? 7) (_ : "seven")]
[(equal? 8) (_ : "eight")]
[(equal? 9) (_ : "nine")]
[(equal? 10) (_ : "ten")]
[ otherwise (_ : "I ran out of fingers!")]])
-- < matchExample 3
-- > "three"
-- < matchExample 5
-- > "five"
-- < matchExample 9
-- > "nine"
-- < matchExample 11
-- > "I ran out of fingers!"
-- < matchExample "three"
-- > "I ran out of fingers!"
-- < matchExample [("hello") ("world")]
-- > "I ran out of fingers!"

@ -3,11 +3,9 @@
main = size size main = size size
size = (\x : size = x : y (self x : compose succ (triage
(y (\self x : id
compose succ self
(triage (x y : compose (self x) (self y))
(\x : x) x)
self ) x 0
(\x y : compose (self x) (self y))
x)) x 0))

@ -18,25 +18,25 @@ main = toSource not?
sourceLeaf = t (head "t") sourceLeaf = t (head "t")
-- Stem case -- Stem case
sourceStem = (\convert : (\a rest : sourceStem = convert : (a rest :
t (head "(") -- Start with a left parenthesis "(". t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t" (t (head "t") -- Add a "t"
(t (head " ") -- Add a space. (t (head " ") -- Add a space.
(convert a -- Recursively convert the argument. (convert a -- Recursively convert the argument.
(t (head ")") rest)))))) -- Close with ")" and append the rest. (t (head ")") rest))))) -- Close with ")" and append the rest.
-- Fork case -- Fork case
sourceFork = (\convert : (\a b rest : sourceFork = convert : (a b rest :
t (head "(") -- Start with a left parenthesis "(". t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t" (t (head "t") -- Add a "t"
(t (head " ") -- Add a space. (t (head " ") -- Add a space.
(convert a -- Recursively convert the first arg. (convert a -- Recursively convert the first arg.
(t (head " ") -- Add another space. (t (head " ") -- Add another space.
(convert b -- Recursively convert the second arg. (convert b -- Recursively convert the second arg.
(t (head ")") rest)))))))) -- Close with ")" and append the rest. (t (head ")") rest))))))) -- Close with ")" and append the rest.
-- Wrapper around triage -- Wrapper around triage
toSource_ = y (\self arg : toSource_ = y (self arg :
triage triage
sourceLeaf -- `triage` "a" case, Leaf sourceLeaf -- `triage` "a" case, Leaf
(sourceStem self) -- `triage` "b" case, Stem (sourceStem self) -- `triage` "b" case, Stem
@ -44,7 +44,7 @@ toSource_ = y (\self arg :
arg) -- The term to be inspected arg) -- The term to be inspected
-- toSource takes a single TC term and returns a String -- toSource takes a single TC term and returns a String
toSource = \v : toSource_ v "" toSource = v : toSource_ v ""
exampleOne = toSource true -- OUT: "(t t)" exampleOne = toSource true -- OUT: "(t t)"
exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))" exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"

@ -1,74 +1,74 @@
false = t false = t
_ = t _ = t
true = t t true = t t
id = \a : a id = a : a
const = \a b : a const = a b : a
pair = t pair = t
if = \cond then else : t (t else (t t then)) t cond if = cond then else : t (t else (t t then)) t cond
y = ((\mut wait fun : wait mut (\x : fun (wait mut x))) y = ((mut wait fun : wait mut (x : fun (wait mut x)))
(\x : x x) (x : x x)
(\a0 a1 a2 : t (t a0) (t t a2) a1)) (a0 a1 a2 : t (t a0) (t t a2) a1))
compose = \f g x : f (g x) compose = f g x : f (g x)
triage = \leaf stem fork : t (t leaf stem) fork triage = leaf stem fork : t (t leaf stem) fork
test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork") test = triage "Leaf" (_ : "Stem") (_ _ : "Fork")
matchBool = (\ot of : triage matchBool = (ot of : triage
of of
(\_ : ot) (_ : ot)
(\_ _ : ot) (_ _ : ot)
) )
lAnd = (triage lAnd = (triage
(\_ : false) (_ : false)
(\_ x : x) (_ x : x)
(\_ _ x : x)) (_ _ x : x))
lOr = (triage lOr = (triage
(\x : x) (x : x)
(\_ _ : true) (_ _ : true)
(\_ _ _ : true)) (_ _ _ : true))
matchPair = \a : triage _ _ a matchPair = a : triage _ _ a
not? = matchBool false true not? = matchBool false true
and? = matchBool id (\_ : false) and? = matchBool id (_ : false)
or? = (\x z : or? = (x z :
matchBool matchBool
(matchBool true true z) (matchBool true true z)
(matchBool true false z) (matchBool true false z)
x) x)
xor? = (\x z : xor? = (x z :
matchBool matchBool
(matchBool false true z) (matchBool false true z)
(matchBool true false z) (matchBool true false z)
x) x)
equal? = y (\self : triage equal? = y (self : triage
(triage (triage
true true
(\_ : false) (_ : false)
(\_ _ : false)) (_ _ : false))
(\ax : (ax :
triage triage
false false
(self ax) (self ax)
(\_ _ : false)) (_ _ : false))
(\ax ay : (ax ay :
triage triage
false false
(\_ : false) (_ : false)
(\bx by : lAnd (self ax bx) (self ay by)))) (bx by : lAnd (self ax bx) (self ay by))))
succ = y (\self : succ = y (self :
triage triage
1 1
t t
(triage (triage
(t (t t)) (t (t t))
(\_ tail : t t (self tail)) (_ tail : t t (self tail))
t)) t))

@ -1,77 +1,70 @@
!import "base.tri" !Local !import "base.tri" !Local
matchList = \a b : triage a _ b _ = t
emptyList? = matchList true (\_ _ : false) matchList = a b : triage a _ b
head = matchList t (\head _ : head)
tail = matchList t (\_ tail : tail)
append = y (\self : matchList emptyList? = matchList true (_ _ : false)
(\k : k) head = matchList t (head _ : head)
(\h r k : pair h (self r k))) tail = matchList t (_ tail : tail)
lExist? = y (\self x : matchList append = y (self : matchList
(k : k)
(h r k : pair h (self r k)))
lExist? = y (self x : matchList
false false
(\h z : or? (equal? x h) (self x z))) (h z : or? (equal? x h) (self x z)))
map_ = y (\self : map_ = y (self :
matchList matchList
(\_ : t) (_ : t)
(\head tail f : pair (f head) (self tail f))) (head tail f : pair (f head) (self tail f)))
map = \f l : map_ l f map = f l : map_ l f
filter_ = y (\self : matchList filter_ = y (self : matchList
(\_ : t) (_ : t)
(\head tail f : matchBool (t head) id (f head) (self tail f))) (head tail f : matchBool (t head) id (f head) (self tail f)))
filter = \f l : filter_ l f filter = f l : filter_ l f
foldl_ = y (\self f l x : matchList (\acc : acc) (\head tail acc : self f tail (f acc head)) l x) foldl_ = y (self f l x : matchList (acc : acc) (head tail acc : self f tail (f acc head)) l x)
foldl = \f x l : foldl_ f l x foldl = f x l : foldl_ f l x
foldr_ = y (\self x f l : matchList x (\head tail : f (self x f tail) head) l) foldr_ = y (self x f l : matchList x (head tail : f (self x f tail) head) l)
foldr = \f x l : foldr_ x f l foldr = f x l : foldr_ x f l
length = y (\self : matchList length = y (self : matchList
0 0
(\_ tail : succ (self tail))) (_ tail : succ (self tail)))
reverse = y (\self : matchList reverse = y (self : matchList
t t
(\head tail : append (self tail) (pair head t))) (head tail : append (self tail) (pair head t)))
snoc = y (\self x : matchList snoc = y (self x : matchList
(pair x t) (pair x t)
(\h z : pair h (self x z))) (h z : pair h (self x z)))
count = y (\self x : matchList count = y (self x : matchList
0 0
(\h z : matchBool (h z : matchBool
(succ (self x z)) (succ (self x z))
(self x z) (self x z)
(equal? x h))) (equal? x h)))
last = y (\self : matchList last = y (self : matchList
t t
(\hd tl : matchBool (hd tl : matchBool
hd hd
(self tl) (self tl)
(emptyList? tl))) (emptyList? tl)))
all? = y (\self pred : matchList all? = y (self pred : matchList
true true
(\h z : and? (pred h) (self pred z))) (h z : and? (pred h) (self pred z)))
any? = y (\self pred : matchList any? = y (self pred : matchList
false false
(\h z : or? (pred h) (self pred z))) (h z : or? (pred h) (self pred z)))
unique_ = y (\self seen : matchList intersect = xs ys : filter (x : lExist? x ys) xs
t
(\head rest : matchBool
(self seen rest)
(pair head (self (pair head seen) rest))
(lExist? head seen)))
unique = \xs : unique_ t xs
intersect = \xs ys : filter (\x : lExist? x ys) xs
union = \xs ys : unique (append xs ys)

@ -1,35 +1,24 @@
!import "list.tri" !Local !import "base.tri" !Local
!import "list.tri" List
match_ = y (\self value patterns : match_ = y (self value patterns :
triage triage
t t
(\_ : t) (_ : t)
(\pattern rest : (pattern rest :
triage triage
t t
(\_ : t) (_ : t)
(\test result : (test result :
if (test value) if (test value)
(result value) (result value)
(self value rest)) (self value rest))
pattern) pattern)
patterns) patterns)
match = (\value patterns : match = (value patterns :
match_ value (map (\sublist : match_ value (List.map (sublist :
pair (head sublist) (head (tail sublist))) pair (List.head sublist) (List.head (List.tail sublist)))
patterns)) patterns))
otherwise = const (t t) otherwise = const (t t)
-- matchExample = (\x : match x [[(equal? 1) (\_ : "one")]
-- [(equal? 2) (\_ : "two")]
-- [(equal? 3) (\_ : "three")]
-- [(equal? 4) (\_ : "four")]
-- [(equal? 5) (\_ : "five")]
-- [(equal? 6) (\_ : "six")]
-- [(equal? 7) (\_ : "seven")]
-- [(equal? 8) (\_ : "eight")]
-- [(equal? 9) (\_ : "nine")]
-- [(equal? 10) (\_ : "ten")]
-- [ otherwise (\_ : "I ran out of fingers!")]])

@ -62,24 +62,39 @@ evalAST env term
elimLambda :: TricuAST -> TricuAST elimLambda :: TricuAST -> TricuAST
elimLambda = go elimLambda = go
where where
-- η-reduction go term
go (SLambda [v] (SApp f (SVar x))) | etaReduction term = elimLambda $ etaReduceResult term
| v == x && not (isFree v f) = elimLambda f | triagePattern term = _TRI
-- Triage optimization | composePattern term = _B
go (SLambda [a] (SLambda [b] (SLambda [c] body))) | lambdaList term = elimLambda $ lambdaListResult term
| body == triageBody = _TRIAGE | nestedLambda term = nestedLambdaResult term
where | application term = applicationResult term
triageBody = | otherwise = term
SApp (SApp TLeaf (SApp (SApp TLeaf (SVar a)) (SVar b))) (SVar c)
-- Composition optimization etaReduction (SLambda [v] (SApp f (SVar x))) = v == x && not (isFree v f)
go (SLambda [f] (SLambda [g] (SLambda [x] body))) etaReduction _ = False
| body == SApp (SVar f) (SApp (SVar g) (SVar x)) = _B etaReduceResult (SLambda [_] (SApp f _)) = f
-- General elimination
go (SLambda (v:vs) body) triagePattern (SLambda [a] (SLambda [b] (SLambda [c] body))) = body == triageBody a b c
| null vs = toSKI v (elimLambda body) triagePattern _ = False
| otherwise = elimLambda (SLambda [v] (SLambda vs body))
go (SApp f g) = SApp (elimLambda f) (elimLambda g) composePattern (SLambda [f] (SLambda [g] (SLambda [x] body))) = body == composeBody f g x
go x = x composePattern _ = False
lambdaList (SLambda [_] (SList _)) = True
lambdaList _ = False
lambdaListResult (SLambda [v] (SList xs)) = SLambda [v] (foldr wrapTLeaf TLeaf xs)
wrapTLeaf m r = SApp (SApp TLeaf m) r
nestedLambda (SLambda (_:_) _) = True
nestedLambda _ = False
nestedLambdaResult (SLambda (v:vs) body)
| null vs = toSKI v (elimLambda body)
| otherwise = elimLambda (SLambda [v] (SLambda vs body))
application (SApp _ _) = True
application _ = False
applicationResult (SApp f g) = SApp (elimLambda f) (elimLambda g)
toSKI x (SVar y) toSKI x (SVar y)
| x == y = _I | x == y = _I
@ -87,30 +102,38 @@ elimLambda = go
toSKI x t@(SApp n u) toSKI x t@(SApp n u)
| not (isFree x t) = SApp _K t | not (isFree x t) = SApp _K t
| otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u) | otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u)
toSKI x (SList xs)
| not (isFree x (SList xs)) = SApp _K (SList xs)
| otherwise = SList (map (toSKI x) xs)
toSKI x t toSKI x t
| not (isFree x t) = SApp _K t | not (isFree x t) = SApp _K t
| otherwise = errorWithoutStackTrace "Unhandled toSKI conversion" | otherwise = errorWithoutStackTrace "Unhandled toSKI conversion"
_S = parseSingle "t (t (t t t)) t" -- Combinators and special forms
_K = parseSingle "t t" _S = parseSingle "t (t (t t t)) t"
_I = parseSingle "t (t (t t)) t" _K = parseSingle "t t"
_B = parseSingle "t (t (t t (t (t (t t t)) t))) (t t)" _I = parseSingle "t (t (t t)) t"
_TRIAGE = parseSingle "t (t (t t (t (t (t t t))))) t" _B = parseSingle "t (t (t t (t (t (t t t)) t))) (t t)"
_TRI = parseSingle "t (t (t t (t (t (t t t))))) t"
-- Pattern bodies
triageBody a b c = SApp (SApp TLeaf (SApp (SApp TLeaf (SVar a)) (SVar b))) (SVar c)
composeBody f g x = SApp (SVar f) (SApp (SVar g) (SVar x))
isFree :: String -> TricuAST -> Bool isFree :: String -> TricuAST -> Bool
isFree x = Set.member x . freeVars isFree x = Set.member x . freeVars
freeVars :: TricuAST -> Set.Set String freeVars :: TricuAST -> Set.Set String
freeVars (SVar v ) = Set.singleton v freeVars (SVar v ) = Set.singleton v
freeVars (SInt _ ) = Set.empty
freeVars (SStr _ ) = Set.empty
freeVars (SList s ) = foldMap freeVars s freeVars (SList s ) = foldMap freeVars s
freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v
freeVars (SApp f a ) = freeVars f <> freeVars a freeVars (SApp f a ) = freeVars f <> freeVars a
freeVars TLeaf = Set.empty freeVars (TFork l r ) = freeVars l <> freeVars r
freeVars (SDef _ _ b) = freeVars b freeVars (SDef _ _ b) = freeVars b
freeVars (TStem t ) = freeVars t freeVars (TStem t ) = freeVars t
freeVars (TFork l r ) = freeVars l <> freeVars r freeVars (SInt _ ) = Set.empty
freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v freeVars (SStr _ ) = Set.empty
freeVars TLeaf = Set.empty
freeVars _ = Set.empty freeVars _ = Set.empty
reorderDefs :: Env -> [TricuAST] -> [TricuAST] reorderDefs :: Env -> [TricuAST] -> [TricuAST]
@ -128,7 +151,7 @@ reorderDefs env defs
graph = buildDepGraph defsOnly graph = buildDepGraph defsOnly
sortedDefs = sortDeps graph sortedDefs = sortDeps graph
defMap = Map.fromList [(name, def) | def@(SDef name _ _) <- defsOnly] defMap = Map.fromList [(name, def) | def@(SDef name _ _) <- defsOnly]
orderedDefs = map (\name -> defMap Map.! name) sortedDefs orderedDefs = map (defMap Map.!) sortedDefs
freeVarsDefs = foldMap snd defsWithFreeVars freeVarsDefs = foldMap snd defsWithFreeVars
freeVarsOthers = foldMap freeVars others freeVarsOthers = foldMap freeVars others
@ -136,8 +159,8 @@ reorderDefs env defs
validNames = Set.fromList defNames `Set.union` Set.fromList (Map.keys env) validNames = Set.fromList defNames `Set.union` Set.fromList (Map.keys env)
missingDeps = Set.toList (allFreeVars `Set.difference` validNames) missingDeps = Set.toList (allFreeVars `Set.difference` validNames)
isDef (SDef _ _ _) = True isDef SDef {} = True
isDef _ = False isDef _ = False
buildDepGraph :: [TricuAST] -> Map.Map String (Set.Set String) buildDepGraph :: [TricuAST] -> Map.Map String (Set.Set String)
buildDepGraph topDefs buildDepGraph topDefs

@ -3,6 +3,7 @@ module Lexer where
import Research import Research
import Control.Monad (void) import Control.Monad (void)
import Data.Functor (($>))
import Data.Void import Data.Void
import Text.Megaparsec import Text.Megaparsec
import Text.Megaparsec.Char hiding (space) import Text.Megaparsec.Char hiding (space)
@ -40,7 +41,6 @@ tricuLexer = do
, try stringLiteral , try stringLiteral
, assign , assign
, colon , colon
, backslash
, openParen , openParen
, closeParen , closeParen
, openBracket , openBracket
@ -54,7 +54,7 @@ lexTricu input = case runParser tricuLexer "" input of
keywordT :: Lexer LToken keywordT :: Lexer LToken
keywordT = string "t" *> notFollowedBy alphaNumChar *> pure LKeywordT keywordT = string "t" *> notFollowedBy alphaNumChar $> LKeywordT
identifier :: Lexer LToken identifier :: Lexer LToken
identifier = do identifier = do
@ -63,7 +63,7 @@ identifier = do
<|> digitChar <|> char '_' <|> char '-' <|> char '?' <|> digitChar <|> char '_' <|> char '-' <|> char '?'
<|> char '$' <|> char '#' <|> char '@' <|> char '%' <|> char '$' <|> char '#' <|> char '@' <|> char '%'
let name = first : rest let name = first : rest
if (name == "t" || name == "!result") if name == "t" || name == "!result"
then fail "Keywords (`t`, `!result`) cannot be used as an identifier" then fail "Keywords (`t`, `!result`) cannot be used as an identifier"
else return (LIdentifier name) else return (LIdentifier name)
@ -76,7 +76,7 @@ namespace = do
return (LNamespace name) return (LNamespace name)
dot :: Lexer LToken dot :: Lexer LToken
dot = char '.' *> pure LDot dot = char '.' $> LDot
lImport :: Lexer LToken lImport :: Lexer LToken
lImport = do lImport = do
@ -88,28 +88,25 @@ lImport = do
return (LImport path name) return (LImport path name)
assign :: Lexer LToken assign :: Lexer LToken
assign = char '=' *> pure LAssign assign = char '=' $> LAssign
colon :: Lexer LToken colon :: Lexer LToken
colon = char ':' *> pure LColon colon = char ':' $> LColon
backslash :: Lexer LToken
backslash = char '\\' *> pure LBackslash
openParen :: Lexer LToken openParen :: Lexer LToken
openParen = char '(' *> pure LOpenParen openParen = char '(' $> LOpenParen
closeParen :: Lexer LToken closeParen :: Lexer LToken
closeParen = char ')' *> pure LCloseParen closeParen = char ')' $> LCloseParen
openBracket :: Lexer LToken openBracket :: Lexer LToken
openBracket = char '[' *> pure LOpenBracket openBracket = char '[' $> LOpenBracket
closeBracket :: Lexer LToken closeBracket :: Lexer LToken
closeBracket = char ']' *> pure LCloseBracket closeBracket = char ']' $> LCloseBracket
lnewline :: Lexer LToken lnewline :: Lexer LToken
lnewline = char '\n' *> pure LNewline lnewline = char '\n' $> LNewline
sc :: Lexer () sc :: Lexer ()
sc = space sc = space
@ -125,7 +122,22 @@ integerLiteral = do
stringLiteral :: Lexer LToken stringLiteral :: Lexer LToken
stringLiteral = do stringLiteral = do
char '"' char '"'
content <- many (noneOf ['"']) content <- manyTill Lexer.charLiteral (char '"')
char '"' --"
return (LStringLiteral content) return (LStringLiteral content)
charLiteral :: Lexer Char
charLiteral = escapedChar <|> normalChar
where
normalChar = noneOf ['"', '\\']
escapedChar = do
void $ char '\\'
c <- oneOf ['n', 't', 'r', 'f', 'b', '\\', '"', '\'']
return $ case c of
'n' -> '\n'
't' -> '\t'
'r' -> '\r'
'f' -> '\f'
'b' -> '\b'
'\\' -> '\\'
'"' -> '"'
'\'' -> '\''

@ -63,18 +63,17 @@ main = do
case args of case args of
Repl -> do Repl -> do
putStrLn "Welcome to the tricu REPL" putStrLn "Welcome to the tricu REPL"
putStrLn "You can exit with `CTRL+D` or the `!exit` command.`" putStrLn "You may exit with `CTRL+D` or the `!exit` command."
putStrLn "Try typing `!` with tab completion for more commands."
repl Map.empty repl Map.empty
Evaluate { file = filePaths, form = form } -> do Evaluate { file = filePaths, form = form } -> do
result <- case filePaths of result <- case filePaths of
[] -> do [] -> runTricuT <$> getContents
t <- getContents
pure $ runTricu t
(filePath:restFilePaths) -> do (filePath:restFilePaths) -> do
initialEnv <- evaluateFile filePath initialEnv <- evaluateFile filePath
finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths
pure $ mainResult finalEnv pure $ mainResult finalEnv
let fRes = formatResult form result let fRes = formatT form result
putStr fRes putStr fRes
TDecode { file = filePaths } -> do TDecode { file = filePaths } -> do
value <- case filePaths of value <- case filePaths of
@ -82,8 +81,48 @@ main = do
(filePath:_) -> readFile filePath (filePath:_) -> readFile filePath
putStrLn $ decodeResult $ result $ evalTricu Map.empty $ parseTricu value putStrLn $ decodeResult $ result $ evalTricu Map.empty $ parseTricu value
runTricu :: String -> T -- Simple interfaces
runTricu input =
runTricu :: String -> String
runTricu = formatT TreeCalculus . runTricuT
runTricuT :: String -> T
runTricuT input =
let asts = parseTricu input let asts = parseTricu input
finalEnv = evalTricu Map.empty asts finalEnv = evalTricu Map.empty asts
in result finalEnv in result finalEnv
runTricuEnv :: Env -> String -> String
runTricuEnv env = formatT TreeCalculus . runTricuTEnv env
runTricuTEnv :: Env -> String -> T
runTricuTEnv env input =
let asts = parseTricu input
finalEnv = evalTricu env asts
in result finalEnv
runTricuWithEnvT :: String -> (Env, T)
runTricuWithEnvT input =
let asts = parseTricu input
finalEnv = evalTricu Map.empty asts
in (finalEnv, result finalEnv)
runTricuWithEnv :: String -> (Env, String)
runTricuWithEnv input =
let asts = parseTricu input
finalEnv = evalTricu Map.empty asts
res = result finalEnv
in (finalEnv, formatT TreeCalculus res)
runTricuEnvWithEnvT :: Env -> String -> (Env, T)
runTricuEnvWithEnvT env input =
let asts = parseTricu input
finalEnv = evalTricu env asts
in (finalEnv, result finalEnv)
runTricuEnvWithEnv :: Env -> String -> (Env, String)
runTricuEnvWithEnv env input =
let asts = parseTricu input
finalEnv = evalTricu env asts
res = result finalEnv
in (finalEnv, formatT TreeCalculus res)

@ -3,12 +3,12 @@ module Parser where
import Lexer import Lexer
import Research import Research
import Control.Monad (void) import Control.Monad (void)
import Control.Monad.State import Control.Monad.State
import Data.List.NonEmpty (toList) import Data.List.NonEmpty (toList)
import Data.Void (Void) import Data.Void (Void)
import Text.Megaparsec import Text.Megaparsec
import Text.Megaparsec.Error (ParseErrorBundle, errorBundlePretty) import Text.Megaparsec.Error (ParseErrorBundle, errorBundlePretty)
import qualified Data.Set as Set import qualified Data.Set as Set
data PState = PState data PState = PState
@ -130,7 +130,6 @@ parseFunctionM = do
parseLambdaM :: ParserM TricuAST parseLambdaM :: ParserM TricuAST
parseLambdaM = do parseLambdaM = do
let ident = (\case LIdentifier _ -> True; _ -> False) let ident = (\case LIdentifier _ -> True; _ -> False)
_ <- satisfyM (== LBackslash)
params <- some (satisfyM ident) params <- some (satisfyM ident)
_ <- satisfyM (== LColon) _ <- satisfyM (== LColon)
scnParserM scnParserM
@ -145,11 +144,11 @@ parseLambdaExpressionM = choice
parseAtomicLambdaM :: ParserM TricuAST parseAtomicLambdaM :: ParserM TricuAST
parseAtomicLambdaM = choice parseAtomicLambdaM = choice
[ parseVarM [ try parseLambdaM
, parseVarM
, parseTreeLeafM , parseTreeLeafM
, parseLiteralM , parseLiteralM
, parseListLiteralM , parseListLiteralM
, try parseLambdaM
, between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM , between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM
] ]
@ -205,7 +204,8 @@ parseTreeLeafOrParenthesizedM = choice
parseAtomicM :: ParserM TricuAST parseAtomicM :: ParserM TricuAST
parseAtomicM = choice parseAtomicM = choice
[ parseVarM [ try parseLambdaM
, parseVarM
, parseTreeLeafM , parseTreeLeafM
, parseListLiteralM , parseListLiteralM
, parseGroupedM , parseGroupedM

@ -6,26 +6,30 @@ import Lexer
import Parser import Parser
import Research import Research
import Control.Exception (SomeException, catch) import Control.Exception (IOException, SomeException, catch
import Control.Monad.IO.Class (liftIO) , displayException)
import Control.Monad (forM_)
import Control.Monad.Catch (handle, MonadCatch) import Control.Monad.Catch (handle, MonadCatch)
import Control.Monad.IO.Class (liftIO)
import Control.Monad.Trans.Class (lift) import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.Maybe (MaybeT(..), runMaybeT) import Control.Monad.Trans.Maybe (MaybeT(..), runMaybeT)
import Data.Char (isSpace) import Data.Char (isSpace, isUpper)
import Data.List ( dropWhile import Data.List (dropWhile, dropWhileEnd, isPrefixOf)
, dropWhileEnd import Data.Version (showVersion)
, isPrefixOf) import Paths_tricu (version)
import System.Console.Haskeline import System.Console.Haskeline
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Text as T
import qualified Data.Text.IO as T
repl :: Env -> IO () repl :: Env -> IO ()
repl env = runInputT settings (withInterrupt (loop env True)) repl env = runInputT settings (withInterrupt (loop env Decode))
where where
settings :: Settings IO settings :: Settings IO
settings = Settings settings = Settings
{ complete = completeWord Nothing " \t" completeCommands { complete = completeWord Nothing " \t" completeCommands
, historyFile = Just ".tricu_history" , historyFile = Just "~/.local/state/tricu/history"
, autoAddHistory = True , autoAddHistory = True
} }
@ -33,19 +37,35 @@ repl env = runInputT settings (withInterrupt (loop env True))
completeCommands str = return $ map simpleCompletion $ completeCommands str = return $ map simpleCompletion $
filter (str `isPrefixOf`) commands filter (str `isPrefixOf`) commands
where where
commands = ["!exit", "!decode", "!definitions", "!import"] commands = [ "!exit"
, "!output"
, "!definitions"
, "!import"
, "!clear"
, "!save"
, "!reset"
, "!version"
]
loop :: Env -> Bool -> InputT IO () loop :: Env -> EvaluatedForm -> InputT IO ()
loop env decode = handle (interruptHandler env decode) $ do loop env form = handle (interruptHandler env form) $ do
minput <- getInputLine "tricu < " minput <- getInputLine "tricu < "
case minput of case minput of
Nothing -> outputStrLn "Exiting tricu" Nothing -> outputStrLn "Exiting tricu"
Just s Just s
| strip s == "" -> loop env decode | strip s == "" -> loop env form
| strip s == "!exit" -> outputStrLn "Exiting tricu" | strip s == "!exit" -> outputStrLn "Exiting tricu"
| strip s == "!decode" -> do | strip s == "!clear" -> do
outputStrLn $ "Decoding " ++ (if decode then "disabled" else "enabled") liftIO $ putStr "\ESC[2J\ESC[H"
loop env (not decode) loop env form
| strip s == "!reset" -> do
outputStrLn "Environment reset to initial state"
loop Map.empty form
| strip s == "!version" -> do
outputStrLn $ "tricu version " ++ showVersion version
loop env form
| "!save" `isPrefixOf` strip s -> handleSave env form
| strip s == "!output" -> handleOutput env form
| strip s == "!definitions" -> do | strip s == "!definitions" -> do
let defs = Map.keys $ Map.delete "!result" env let defs = Map.keys $ Map.delete "!result" env
if null defs if null defs
@ -53,57 +73,86 @@ repl env = runInputT settings (withInterrupt (loop env True))
else do else do
outputStrLn "Available definitions:" outputStrLn "Available definitions:"
mapM_ outputStrLn defs mapM_ outputStrLn defs
loop env decode loop env form
| "!import" `isPrefixOf` strip s -> handleImport env decode | "!import" `isPrefixOf` strip s -> handleImport env form
| take 2 s == "--" -> loop env decode | take 2 s == "--" -> loop env form
| otherwise -> do | otherwise -> do
newEnv <- liftIO $ processInput env s decode `catch` errorHandler env newEnv <- liftIO $ processInput env s form `catch` errorHandler env
loop newEnv decode loop newEnv form
handleOutput :: Env -> EvaluatedForm -> InputT IO ()
handleOutput env currentForm = do
let formats = [Decode, TreeCalculus, FSL, AST, Ternary, Ascii]
outputStrLn "Available output formats:"
mapM_ (\(i, f) -> outputStrLn $ show i ++ ". " ++ show f)
(zip [1..] formats)
handleImport :: Env -> Bool -> InputT IO ()
handleImport env decode = do
result <- runMaybeT $ do result <- runMaybeT $ do
let fileSettings = setComplete completeFilename defaultSettings input <- MaybeT $ getInputLine "Select output format (1-6) < "
path <- MaybeT $ runInputT fileSettings $ case reads input of
[(n, "")] | n >= 1 && n <= 6 ->
return $ formats !! (n-1)
_ -> MaybeT $ return Nothing
case result of
Nothing -> do
outputStrLn "Invalid selection. Keeping current output format."
loop env currentForm
Just newForm -> do
outputStrLn $ "Output format changed to: " ++ show newForm
loop env newForm
handleImport :: Env -> EvaluatedForm -> InputT IO ()
handleImport env form = do
res <- runMaybeT $ do
let fset = setComplete completeFilename defaultSettings
path <- MaybeT $ runInputT fset $
getInputLineWithInitial "File path to load < " ("", "") getInputLineWithInitial "File path to load < " ("", "")
contents <- liftIO $ readFile (strip path) text <- MaybeT $ liftIO $ handle (\e -> do
putStrLn $ "Error reading file: " ++ displayException (e :: IOException)
return Nothing
) $ Just <$> readFile (strip path)
if | Left err <- parseProgram (lexTricu contents) -> do case parseProgram (lexTricu text) of
lift $ outputStrLn $ "Parse error: " ++ handleParseError err Left err -> do
MaybeT $ return Nothing lift $ outputStrLn $ "Parse error: " ++ handleParseError err
| Right ast <- parseProgram (lexTricu contents) -> do MaybeT $ return Nothing
ns <- MaybeT $ runInputT defaultSettings $ Right ast -> do
getInputLineWithInitial "Namespace (or !Local for no namespace) < " ("", "") ns <- MaybeT $ runInputT defaultSettings $
getInputLineWithInitial "Namespace (or !Local for no namespace) < " ("", "")
processedAst <- liftIO $ preprocessFile (strip path) let name = strip ns
let namespacedAst | strip ns == "!Local" = processedAst if (name /= "!Local" && (null name || not (isUpper (head name)))) then do
| otherwise = nsDefinitions (strip ns) processedAst lift $ outputStrLn "Namespace must start with an uppercase letter"
loadedEnv = evalTricu env namespacedAst MaybeT $ return Nothing
return loadedEnv else do
prog <- liftIO $ preprocessFile (strip path)
let code = case name of
"!Local" -> prog
_ -> nsDefinitions name prog
env' = evalTricu env code
return env'
case res of
Nothing -> do
outputStrLn "Import cancelled"
loop env form
Just env' ->
loop (Map.delete "!result" env') form
if | Nothing <- result -> do interruptHandler :: Env -> EvaluatedForm -> Interrupt -> InputT IO ()
outputStrLn "Import cancelled." interruptHandler env form _ = do
loop env decode
| Just loadedEnv <- result ->
loop (Map.delete "!result" loadedEnv) decode
interruptHandler :: Env -> Bool -> Interrupt -> InputT IO ()
interruptHandler env decode _ = do
outputStrLn "Interrupted with CTRL+C\n\ outputStrLn "Interrupted with CTRL+C\n\
\You can use the !exit command or CTRL+D to exit" \You can use the !exit command or CTRL+D to exit"
loop env decode loop env form
processInput :: Env -> String -> Bool -> IO Env processInput :: Env -> String -> EvaluatedForm -> IO Env
processInput env input decode = do processInput env input form = do
let asts = parseTricu input let asts = parseTricu input
newEnv = evalTricu env asts newEnv = evalTricu env asts
case Map.lookup "!result" newEnv of case Map.lookup "!result" newEnv of
Just r -> do Just r -> do
putStrLn $ "tricu > " ++ putStrLn $ "tricu > " ++ formatT form r
if decode
then decodeResult r
else show r
Nothing -> pure () Nothing -> pure ()
return newEnv return newEnv
@ -114,3 +163,28 @@ repl env = runInputT settings (withInterrupt (loop env True))
strip :: String -> String strip :: String -> String
strip = dropWhileEnd isSpace . dropWhile isSpace strip = dropWhileEnd isSpace . dropWhile isSpace
handleSave :: Env -> EvaluatedForm -> InputT IO ()
handleSave env form = do
let fset = setComplete completeFilename defaultSettings
path <- runInputT fset $
getInputLineWithInitial "File to save < " ("", "")
case path of
Nothing -> do
outputStrLn "Save cancelled"
loop env form
Just p -> do
let definitions = Map.toList $ Map.delete "!result" env
filepath = strip p
outputStrLn "Starting save..."
liftIO $ writeFile filepath ""
outputStrLn "File created..."
forM_ definitions $ \(name, value) -> do
let content = name ++ " = " ++ formatT TreeCalculus value ++ "\n"
outputStrLn $ "Writing definition: " ++ name ++ " with length " ++ show (length content)
liftIO $ appendFile filepath content
outputStrLn $ "Saved " ++ show (length definitions) ++ " definitions to " ++ p
loop env form

@ -1,6 +1,5 @@
module Research where module Research where
import Control.Monad.State
import Data.List (intercalate) import Data.List (intercalate)
import Data.Map (Map) import Data.Map (Map)
import Data.Text (Text, replace) import Data.Text (Text, replace)
@ -16,7 +15,7 @@ data T = Leaf | Stem T | Fork T T
-- Abstract Syntax Tree for tricu -- Abstract Syntax Tree for tricu
data TricuAST data TricuAST
= SVar String = SVar String
| SInt Int | SInt Integer
| SStr String | SStr String
| SList [TricuAST] | SList [TricuAST]
| SDef String [String] TricuAST | SDef String [String] TricuAST
@ -34,12 +33,11 @@ data LToken
= LKeywordT = LKeywordT
| LIdentifier String | LIdentifier String
| LNamespace String | LNamespace String
| LIntegerLiteral Int | LIntegerLiteral Integer
| LStringLiteral String | LStringLiteral String
| LAssign | LAssign
| LColon | LColon
| LDot | LDot
| LBackslash
| LOpenParen | LOpenParen
| LCloseParen | LCloseParen
| LOpenBracket | LOpenBracket
@ -55,15 +53,24 @@ data EvaluatedForm = TreeCalculus | FSL | AST | Ternary | Ascii | Decode
-- Environment containing previously evaluated TC terms -- Environment containing previously evaluated TC terms
type Env = Map.Map String T type Env = Map.Map String T
-- Tree Calculus Reduction -- Tree Calculus Reduction Rules
{-
The t operator is left associative.
1. t t a b -> a
2. t (t a) b c -> a c (b c)
3a. t (t a b) c t -> a
3b. t (t a b) c (t u) -> b u
3c. t (t a b) c (t u v) -> c u v
-}
apply :: T -> T -> T apply :: T -> T -> T
apply Leaf b = Stem b apply (Fork Leaf a) _ = a
apply (Stem a) b = Fork a b apply (Fork (Stem a) b) c = apply (apply a c) (apply b c)
apply (Fork Leaf a) _ = a apply (Fork (Fork a b) c) Leaf = a
apply (Fork (Stem a1) a2) b = apply (apply a1 b) (apply a2 b) apply (Fork (Fork a b) c) (Stem u) = apply b u
apply (Fork (Fork a1 a2) a3) Leaf = a1 apply (Fork (Fork a b) c) (Fork u v) = apply (apply c u) v
apply (Fork (Fork a1 a2) a3) (Stem u) = apply a2 u -- Left associative `t`
apply (Fork (Fork a1 a2) a3) (Fork u v) = apply (apply a3 u) v apply Leaf b = Stem b
apply (Stem a) b = Fork a b
-- Booleans -- Booleans
_false :: T _false :: T
@ -77,9 +84,9 @@ _not = Fork (Fork _true (Fork Leaf _false)) Leaf
-- Marshalling -- Marshalling
ofString :: String -> T ofString :: String -> T
ofString str = ofList (map ofNumber (map fromEnum str)) ofString str = ofList $ map (ofNumber . toInteger . fromEnum) str
ofNumber :: Int -> T ofNumber :: Integer -> T
ofNumber 0 = Leaf ofNumber 0 = Leaf
ofNumber n = ofNumber n =
Fork Fork
@ -87,10 +94,9 @@ ofNumber n =
(ofNumber (n `div` 2)) (ofNumber (n `div` 2))
ofList :: [T] -> T ofList :: [T] -> T
ofList [] = Leaf ofList = foldr Fork Leaf
ofList (x:xs) = Fork x (ofList xs)
toNumber :: T -> Either String Int toNumber :: T -> Either String Integer
toNumber Leaf = Right 0 toNumber Leaf = Right 0
toNumber (Fork Leaf rest) = case toNumber rest of toNumber (Fork Leaf rest) = case toNumber rest of
Right n -> Right (2 * n) Right n -> Right (2 * n)
@ -102,7 +108,7 @@ toNumber _ = Left "Invalid Tree Calculus number"
toString :: T -> Either String String toString :: T -> Either String String
toString tc = case toList tc of toString tc = case toList tc of
Right list -> traverse (fmap toEnum . toNumber) list Right list -> traverse (fmap (toEnum . fromInteger) . toNumber) list
Left err -> Left "Invalid Tree Calculus string" Left err -> Left "Invalid Tree Calculus string"
toList :: T -> Either String [T] toList :: T -> Either String [T]
@ -113,20 +119,20 @@ toList (Fork x rest) = case toList rest of
toList _ = Left "Invalid Tree Calculus list" toList _ = Left "Invalid Tree Calculus list"
-- Outputs -- Outputs
formatResult :: EvaluatedForm -> T -> String formatT :: EvaluatedForm -> T -> String
formatResult TreeCalculus = toSimpleT . show formatT TreeCalculus = toSimpleT . show
formatResult FSL = show formatT FSL = show
formatResult AST = show . toAST formatT AST = show . toAST
formatResult Ternary = toTernaryString formatT Ternary = toTernaryString
formatResult Ascii = toAscii formatT Ascii = toAscii
formatResult Decode = decodeResult formatT Decode = decodeResult
toSimpleT :: String -> String toSimpleT :: String -> String
toSimpleT s = T.unpack toSimpleT s = T.unpack
$ replace "Fork" "t" $ replace "Fork" "t"
$ replace "Stem" "t" $ replace "Stem" "t"
$ replace "Leaf" "t" $ replace "Leaf" "t"
$ (T.pack s) $ T.pack s
toTernaryString :: T -> String toTernaryString :: T -> String
toTernaryString Leaf = "0" toTernaryString Leaf = "0"
@ -153,8 +159,18 @@ toAscii tree = go tree "" True
++ go right (prefix ++ (if isLast then " " else "| ")) True ++ go right (prefix ++ (if isLast then " " else "| ")) True
decodeResult :: T -> String decodeResult :: T -> String
decodeResult tc decodeResult Leaf = "t"
| Right num <- toNumber tc = show num decodeResult tc =
| Right str <- toString tc = "\"" ++ str ++ "\"" case (toString tc, toList tc, toNumber tc) of
| Right list <- toList tc = "[" ++ intercalate ", " (map decodeResult list) ++ "]" (Right s, _, _) | all isCommonChar s -> "\"" ++ s ++ "\""
| otherwise = formatResult TreeCalculus tc (_, _, Right n) -> show n
(_, Right xs@(_:_), _) -> "[" ++ intercalate ", " (map decodeResult xs) ++ "]"
(_, Right [], _) -> "[]"
_ -> formatT TreeCalculus tc
where
isCommonChar c =
let n = fromEnum c
in (n >= 32 && n <= 126)
|| n == 9
|| n == 10
|| n == 13

@ -21,8 +21,8 @@ import qualified Data.Set as Set
main :: IO () main :: IO ()
main = defaultMain tests main = defaultMain tests
runTricu :: String -> String tricuTestString :: String -> String
runTricu s = show $ result (evalTricu Map.empty $ parseTricu s) tricuTestString s = show $ result (evalTricu Map.empty $ parseTricu s)
tests :: TestTree tests :: TestTree
tests = testGroup "Tricu Tests" tests = testGroup "Tricu Tests"
@ -34,6 +34,7 @@ tests = testGroup "Tricu Tests"
, fileEval , fileEval
, modules , modules
, demos , demos
, decoding
] ]
lexer :: TestTree lexer :: TestTree
@ -50,7 +51,22 @@ lexer = testGroup "Lexer Tests"
, testCase "Lex escaped characters in strings" $ do , testCase "Lex escaped characters in strings" $ do
let input = "\"hello\\nworld\"" let input = "\"hello\\nworld\""
expect = Right [LStringLiteral "hello\\nworld"] expect = Right [LStringLiteral "hello\nworld"]
runParser tricuLexer "" input @?= expect
, testCase "Lex multiple escaped characters in strings" $ do
let input = "\"tab:\\t newline:\\n quote:\\\" backslash:\\\\\""
expect = Right [LStringLiteral "tab:\t newline:\n quote:\" backslash:\\"]
runParser tricuLexer "" input @?= expect
, testCase "Lex escaped characters in string literals" $ do
let input = "x = \"line1\\nline2\\tindented\""
expect = Right [LIdentifier "x", LAssign, LStringLiteral "line1\nline2\tindented"]
runParser tricuLexer "" input @?= expect
, testCase "Lex empty string with escape sequence" $ do
let input = "\"\\\"\""
expect = Right [LStringLiteral "\""]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex mixed literals" $ do , testCase "Lex mixed literals" $ do
@ -86,7 +102,7 @@ parser = testGroup "Parser Tests"
Right _ -> assertFailure "Expected failure when trying to assign the value of T" Right _ -> assertFailure "Expected failure when trying to assign the value of T"
, testCase "Parse function definitions" $ do , testCase "Parse function definitions" $ do
let input = "x = (\\a b c : a)" let input = "x = (a b c : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a")))) expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
parseSingle input @?= expect parseSingle input @?= expect
@ -106,7 +122,7 @@ parser = testGroup "Parser Tests"
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse function with applications" $ do , testCase "Parse function with applications" $ do
let input = "f = (\\x : t x)" let input = "f = (x : t x)"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x"))) expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
parseSingle input @?= expect parseSingle input @?= expect
@ -148,22 +164,22 @@ parser = testGroup "Parser Tests"
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested parentheses in function body" $ do , testCase "Parse nested parentheses in function body" $ do
let input = "f = (\\x : t (t (t t)))" let input = "f = (x : t (t (t t)))"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf)))) expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse lambda abstractions" $ do , testCase "Parse lambda abstractions" $ do
let input = "(\\a : a)" let input = "(a : a)"
expect = (SLambda ["a"] (SVar "a")) expect = (SLambda ["a"] (SVar "a"))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse multiple arguments to lambda abstractions" $ do , testCase "Parse multiple arguments to lambda abstractions" $ do
let input = "x = (\\a b : a)" let input = "x = (a b : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a"))) expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Grouping T terms with parentheses in function application" $ do , testCase "Grouping T terms with parentheses in function application" $ do
let input = "x = (\\a : a)\nx (t)" let input = "x = (a : a)\nx (t)"
expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf] expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
parseTricu input @?= expect parseTricu input @?= expect
@ -250,7 +266,7 @@ simpleEvaluation = testGroup "Evaluation Tests"
, testCase "Immutable definitions" $ do , testCase "Immutable definitions" $ do
let input = "x = t t\nx = t\nx" let input = "x = t t\nx = t\nx"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
result <- try (evaluate (runTricu input)) :: IO (Either SomeException String) result <- try (evaluate (tricuTestString input)) :: IO (Either SomeException String)
case result of case result of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected evaluation error" Right _ -> assertFailure "Expected evaluation error"
@ -258,7 +274,7 @@ simpleEvaluation = testGroup "Evaluation Tests"
, testCase "Apply identity to Boolean Not" $ do , testCase "Apply identity to Boolean Not" $ do
let not = "(t (t (t t) (t t t)) t)" let not = "(t (t (t t) (t t t)) t)"
let input = "x = (\\a : a)\nx " ++ not let input = "x = (a : a)\nx " ++ not
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
] ]
@ -266,81 +282,85 @@ simpleEvaluation = testGroup "Evaluation Tests"
lambdas :: TestTree lambdas :: TestTree
lambdas = testGroup "Lambda Evaluation Tests" lambdas = testGroup "Lambda Evaluation Tests"
[ testCase "Lambda Identity Function" $ do [ testCase "Lambda Identity Function" $ do
let input = "id = (\\x : x)\nid t" let input = "id = (x : x)\nid t"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda Constant Function (K combinator)" $ do , testCase "Lambda Constant Function (K combinator)" $ do
let input = "k = (\\x y : x)\nk t (t t)" let input = "k = (x y : x)\nk t (t t)"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda Application with Variable" $ do , testCase "Lambda Application with Variable" $ do
let input = "id = (\\x : x)\nval = t t\nid val" let input = "id = (x : x)\nval = t t\nid val"
runTricu input @?= "Stem Leaf" tricuTestString input @?= "Stem Leaf"
, testCase "Lambda Application with Multiple Arguments" $ do , testCase "Lambda Application with Multiple Arguments" $ do
let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)" let input = "apply = (f x y : f x y)\nk = (a b : a)\napply k t (t t)"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Nested Lambda Application" $ do , testCase "Nested Lambda Application" $ do
let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t" let input = "apply = (f x y : f x y)\nid = (x : x)\napply (f x : f x) id t"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda with a complex body" $ do , testCase "Lambda with a complex body" $ do
let input = "f = (\\x : t (t x))\nf t" let input = "f = (x : t (t x))\nf t"
runTricu input @?= "Stem (Stem Leaf)" tricuTestString input @?= "Stem (Stem Leaf)"
, testCase "Lambda returning a function" $ do , testCase "Lambda returning a function" $ do
let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)" let input = "f = (x : (y : x))\ng = f t\ng (t t)"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda with Shadowing" $ do , testCase "Lambda with Shadowing" $ do
let input = "f = (\\x : (\\x : x))\nf t (t t)" let input = "f = (x : (x : x))\nf t (t t)"
runTricu input @?= "Stem Leaf" tricuTestString input @?= "Stem Leaf"
, testCase "Lambda returning another lambda" $ do , testCase "Lambda returning another lambda" $ do
let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)" let input = "k = (x : (y : x))\nk_app = k t\nk_app (t t)"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda with free variables" $ do , testCase "Lambda with free variables" $ do
let input = "y = t t\nf = (\\x : y)\nf t" let input = "y = t t\nf = (x : y)\nf t"
runTricu input @?= "Stem Leaf" tricuTestString input @?= "Stem Leaf"
, testCase "SKI Composition" $ do , testCase "SKI Composition" $ do
let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)" let input = "s = (x y z : x z (y z))\nk = (x y : x)\ni = (x : x)\ncomp = s k i\ncomp t (t t)"
runTricu input @?= "Stem (Stem Leaf)" tricuTestString input @?= "Stem (Stem Leaf)"
, testCase "Lambda with multiple parameters and application" $ do , testCase "Lambda with multiple parameters and application" $ do
let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)" let input = "f = (a b c : t a b c)\nf t (t t) (t t t)"
runTricu input @?= "Stem Leaf" tricuTestString input @?= "Stem Leaf"
, testCase "Lambda with nested application in the body" $ do , testCase "Lambda with nested application in the body" $ do
let input = "f = (\\x : t (t (t x)))\nf t" let input = "f = (x : t (t (t x)))\nf t"
runTricu input @?= "Stem (Stem (Stem Leaf))" tricuTestString input @?= "Stem (Stem (Stem Leaf))"
, testCase "Lambda returning a function and applying it" $ do , testCase "Lambda returning a function and applying it" $ do
let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)" let input = "f = (x : (y : t x y))\ng = f t\ng (t t)"
runTricu input @?= "Fork Leaf (Stem Leaf)" tricuTestString input @?= "Fork Leaf (Stem Leaf)"
, testCase "Lambda applying a variable" $ do , testCase "Lambda applying a variable" $ do
let input = "id = (\\x : x)\na = t t\nid a" let input = "id = (x : x)\na = t t\nid a"
runTricu input @?= "Stem Leaf" tricuTestString input @?= "Stem Leaf"
, testCase "Nested lambda abstractions in the same expression" $ do , testCase "Nested lambda abstractions in the same expression" $ do
let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t" let input = "f = (x : (y : x y))\ng = (z : z)\nf g t"
runTricu input @?= "Leaf" tricuTestString input @?= "Leaf"
, testCase "Lambda with a string literal" $ do , testCase "Lambda applied to string literal" $ do
let input = "f = (\\x : x)\nf \"hello\"" let input = "f = (x : x)\nf \"hello\""
runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))" tricuTestString input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
, testCase "Lambda with an integer literal" $ do , testCase "Lambda applied to integer literal" $ do
let input = "f = (\\x : x)\nf 42" let input = "f = (x : x)\nf 42"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))" tricuTestString input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
, testCase "Lambda with a list literal" $ do , testCase "Lambda applied to list literal" $ do
let input = "f = (\\x : x)\nf [t (t t)]" let input = "f = (x : x)\nf [t (t t)]"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)" tricuTestString input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
, testCase "Lambda containing list literal" $ do
let input = "(a : [(a)]) 1"
tricuTestString input @?= "Fork (Fork (Stem Leaf) Leaf) Leaf"
] ]
providedLibraries :: TestTree providedLibraries :: TestTree
@ -414,7 +434,7 @@ providedLibraries = testGroup "Library Tests"
, testCase "List map" $ do , testCase "List map" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/list.tri"
let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))" let input = "head (tail (map (a : (t t t)) [(t) (t) (t)]))"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf result env @?= Fork Leaf Leaf
@ -518,3 +538,35 @@ demos = testGroup "Test provided demo functionality"
res <- liftIO $ evaluateFileResult "./demos/levelOrderTraversal.tri" res <- liftIO $ evaluateFileResult "./demos/levelOrderTraversal.tri"
decodeResult res @?= "\"\n1 \n2 3 \n4 5 6 7 \n8 11 10 9 12 \"" decodeResult res @?= "\"\n1 \n2 3 \n4 5 6 7 \n8 11 10 9 12 \""
] ]
decoding :: TestTree
decoding = testGroup "Decoding Tests"
[ testCase "Decode Leaf" $ do
decodeResult Leaf @?= "t"
, testCase "Decode list of non-ASCII numbers" $ do
let input = ofList [ofNumber 1, ofNumber 14, ofNumber 6]
decodeResult input @?= "[1, 14, 6]"
, testCase "Decode list of ASCII numbers as a string" $ do
let input = ofList [ofNumber 97, ofNumber 98, ofNumber 99]
decodeResult input @?= "\"abc\""
, testCase "Decode small number" $ do
decodeResult (ofNumber 42) @?= "42"
, testCase "Decode large number" $ do
decodeResult (ofNumber 9999) @?= "9999"
, testCase "Decode string in list" $ do
let input = ofList [ofString "hello", ofString "world"]
decodeResult input @?= "[\"hello\", \"world\"]"
, testCase "Decode mixed list with strings" $ do
let input = ofList [ofString "hello", ofNumber 42, ofString "world"]
decodeResult input @?= "[\"hello\", 42, \"world\"]"
, testCase "Decode nested lists with strings" $ do
let input = ofList [ofList [ofString "nested"], ofString "string"]
decodeResult input @?= "[[\"nested\"], \"string\"]"
]

@ -1,9 +1,9 @@
-- This is a tricu comment! -- This is a tricu comment!
-- t (t t) (t (t t t)) -- t (t t) (t (t t t))
-- t (t t t) (t t) -- t (t t t) (t t)
-- x = (\a : a) -- x = (a : a)
main = t (t t) t -- Fork (Stem Leaf) Leaf main = t (t t) t -- Fork (Stem Leaf) Leaf
-- t t -- t t
-- x -- x
-- x = (\a : a) -- x = (a : a)
-- t -- t

@ -1 +1 @@
main = (\x : x) t main = (x : x) t

@ -1,2 +1,2 @@
x = map (\i : append "Successfully concatenated " i) [("two strings!")] x = map (i : append "Successfully concatenated " i) [("two strings!")]
main = equal? x [("Successfully concatenated two strings!")] main = equal? x [("Successfully concatenated two strings!")]

@ -1,21 +1,21 @@
compose = \f g x : f (g x) compose = f g x : f (g x)
succ = y (\self : succ = y (self :
triage triage
1 1
t t
(triage (triage
(t (t t)) (t (t t))
(\_ tail : t t (self tail)) (_ tail : t t (self tail))
t)) t))
size = (\x : size = (x :
(y (\self x : (y (self x :
compose succ compose succ
(triage (triage
(\x : x) (x : x)
self self
(\x y : compose (self x) (self y)) (x y : compose (self x) (self y))
x)) x 0)) x)) x 0))
size size size size

@ -1 +1 @@
head (map (\i : append "String " i) [("test!")]) head (map (i : append "String " i) [("test!")])

@ -1 +1 @@
y = \x : x y = x : x

@ -1,7 +1,7 @@
cabal-version: 1.12 cabal-version: 1.12
name: tricu name: tricu
version: 0.15.0 version: 0.19.0
description: A micro-language for exploring Tree Calculus description: A micro-language for exploring Tree Calculus
author: James Eversole author: James Eversole
maintainer: james@eversole.co maintainer: james@eversole.co