Compare commits

...

No commits in common. "main" and "0.9.0" have entirely different histories.
main ... 0.9.0

46 changed files with 517 additions and 1174 deletions

View File

@ -54,12 +54,16 @@ jobs:
cp -L ./result/bin/tricu ./tricu cp -L ./result/bin/tricu ./tricu
chmod 755 ./tricu chmod 755 ./tricu
nix develop --command upx ./tricu nix develop --command upx ./tricu
- name: Setup go for release action
uses: actions/setup-go@v5
with:
go-version: '>=1.20.1'
- name: Release binary - name: Release binary
uses: akkuman/gitea-release-action@v1 uses: https://gitea.com/actions/release-action@main
with: with:
files: |- files: |-
./tricu ./tricu
token: '${{ secrets.RELEASE_TOKEN }}' api_key: '${{ secrets.RELEASE_TOKEN }}'
body: '${{ gitea.event.head_commit.message }}' pre_release: true
prerelease: true

1
.gitignore vendored
View File

@ -9,4 +9,3 @@
WD WD
bin/ bin/
dist* dist*
.tricu_history

View File

@ -2,36 +2,34 @@
## Introduction ## Introduction
tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. It is fundamentally based on the application of [Tree Calculus](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf) terms, but minimal syntax sugar is included to provide a useful programming tool. tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. It is fundamentally based on the application of [Tree Calculus](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf) terms, but minimal syntax sugar is included to provide a useful programming tool. tricu is under active development and you can expect breaking changes with nearly every commit.
*tricu is under active development and you should expect breaking changes with every commit.*
tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`. tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`.
## Features ## Features
- Tree Calculus operator: `t` - Tree Calculus operator: `t`
- Immutable definitions: `x = t t` - Assignments: `x = t t`
- Lambda abstraction: `id = (a : a)` - Lambda abstraction syntax: `id = (\a : a)`
- List, Number, and String literals: `[(2) ("Hello")]` - List, Number, and String literals: `[(2) ("Hello")]`
- Function application: `not (not false)` - Function application: `not (not false)`
- Higher order/first-class functions: `map (a : append a "!") [("Hello")]` - Higher order/first-class functions: `map (\a : lconcat a "!") [("Hello")]`
- Intensionality blurs the distinction between functions and data (see REPL examples) - Intensionality blurs the distinction between functions and data (see REPL examples)
- Simple module system for code organization - Immutability
## REPL examples ## REPL examples
``` ```
tricu < -- Anything after `--` on a single line is a comment tricu < -- Anything after `--` on a single line is a comment
tricu < id = (a : a) -- Lambda abstraction is eliminated to tree calculus terms tricu < id = (\a : a) -- Lambda abstraction is eliminated to tree calculus terms
tricu < head (map (i : append i " world!") [("Hello, ")]) tricu < head (map (\i : lconcat i " world!") [("Hello, ")])
tricu > "Hello, world!" tricu > "Hello, world!"
tricu < id (head (map (i : append i " world!") [("Hello, ")])) tricu < id (head (map (\i : lconcat i " world!") [("Hello, ")]))
tricu > "Hello, world!" tricu > "Hello, world!"
tricu < -- Intensionality! We can inspect the structure of a function or data. tricu < -- Intensionality! We can inspect the structure of a function or data.
tricu < triage = (a b c : t (t a b) c) tricu < triage = (\a b c : t (t a b) c)
tricu < test = triage "Leaf" (z : "Stem") (a b : "Fork") tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork")
tricu < test (t t) tricu < test (t t)
tricu > "Stem" tricu > "Stem"
tricu < -- We can even convert a term back to source code (/demos/toSource.tri) tricu < -- We can even convert a term back to source code (/demos/toSource.tri)
@ -40,21 +38,13 @@ tricu > "(t (t (t t) (t t t)) (t t (t t t)))"
tricu < -- or calculate its size (/demos/size.tri) tricu < -- or calculate its size (/demos/size.tri)
tricu < size not? tricu < size not?
tricu > 12 tricu > 12
tricu < -- REPL Commands:
tricu < !definitions -- Lists all available definitions
tricu < !output -- Change output format (Tree, FSL, AST, etc.)
tricu < !import -- Import definitions from a file
tricu < !exit -- Exit the REPL
tricu < !clear -- ANSI screen clear
tricu < !save -- Save all REPL definitions to a file that you can !import
tricu < !reset -- Clear all REPL definitions
tricu < !version -- Print tricu version
``` ```
## Installation and Use ## Installation and Use
You can easily build and run this project using [Nix](https://nixos.org/download/). [Releases are available for Linux.](https://git.eversole.co/James/tricu/releases)
Or you can easily build and/or run this project using [Nix](https://nixos.org/download/).
- Quick Start (REPL): - Quick Start (REPL):
- `nix run git+https://git.eversole.co/James/tricu` - `nix run git+https://git.eversole.co/James/tricu`
@ -81,7 +71,7 @@ tricu eval [OPTIONS]
-f --file=FILE Input file path(s) for evaluation. -f --file=FILE Input file path(s) for evaluation.
Defaults to stdin. Defaults to stdin.
-t --form=FORM Optional output form: (tree|fsl|ast|ternary|ascii|decode). -t --form=FORM Optional output form: (tree|fsl|ast|ternary|ascii).
Defaults to tricu-compatible `t` tree form. Defaults to tricu-compatible `t` tree form.
tricu decode [OPTIONS] tricu decode [OPTIONS]
@ -91,12 +81,6 @@ tricu decode [OPTIONS]
Defaults to stdin. Defaults to stdin.
``` ```
## Collaborating
I am happy to accept issue reports, pull requests, or questions about tricu [via email](mailto:james@eversole.co).
If you want to collaborate but don't want to email back-and-forth, please reach out via email once to let me know and I will provision a git.eversole.co account for you.
## Acknowledgements ## Acknowledgements
Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog). Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog).

View File

@ -1,8 +1,3 @@
!import "../lib/base.tri" !Local
!import "../lib/list.tri" !Local
main = lambdaEqualsTC
-- We represent `false` with a Leaf and `true` with a Stem Leaf -- We represent `false` with a Leaf and `true` with a Stem Leaf
demo_false = t demo_false = t
demo_true = t t demo_true = t t
@ -11,17 +6,20 @@ demo_true = t t
not_TC? = t (t (t t) (t t t)) (t t (t t t)) not_TC? = t (t (t t) (t t t)) (t t (t t t))
-- /demos/toSource.tri contains an explanation of `triage` -- /demos/toSource.tri contains an explanation of `triage`
demo_triage = a b c : t (t a b) c demo_triage = \a b c : t (t a b) c
demo_matchBool = a b : demo_triage b (_ : a) (_ _ : a) demo_matchBool = (\ot of : demo_triage
of
(\_ : ot)
(\_ _ : ot)
)
-- Lambda representation of the Boolean `not` function -- Lambda representation of the Boolean `not` function
not_Lambda? = demo_matchBool demo_false demo_true not_Lambda? = demo_matchBool demo_false demo_true
-- As tricu eliminates Lambda terms to SKI combinators, the tree form of many -- Since tricu eliminates Lambda terms to SKI combinators, the tree form of many
-- functions defined via Lambda terms are larger than the most efficient TC -- functions defined via Lambda terms are larger than the most efficient TC
-- representation possible. Between different languages that evaluate to tree -- representation. Between different languages that evaluate to tree calculus
-- calculus terms, the exact implementation of Lambda elimination may differ -- terms, the exact implementation of Lambda elimination may differ and lead
-- and lead to different trees even if they share extensional behavior. -- to different tree representations even if they share extensional behavior.
-- Let's see if these are the same: -- Let's see if these are the same:
lambdaEqualsTC = equal? not_TC? not_Lambda? lambdaEqualsTC = equal? not_TC? not_Lambda?

View File

@ -1,13 +1,11 @@
!import "../lib/base.tri" Lib
!import "../lib/list.tri" !Local
main = exampleTwo
-- Level Order Traversal of a labelled binary tree -- Level Order Traversal of a labelled binary tree
-- Objective: Print each "level" of the tree on a separate line -- Objective: Print each "level" of the tree on a separate line
-- --
-- We model labelled binary trees as nested lists where values act as labels. We -- NOTICE: This demo relies on tricu base library functions
-- require explicit notation of empty nodes. Empty nodes can be represented --
-- with an empty list, `[]`, which evaluates to a single node `t`. -- We model labelled binary trees as sublists where values act as labels. We
-- require explicit not?ation of empty nodes. Empty nodes can be represented
-- with an empty list, `[]`, which is equivalent to a single node `t`.
-- --
-- Example tree inputs: -- Example tree inputs:
-- [("1") [("2") [("4") t t] t] [("3") [("5") t t] [("6") t t]]]] -- [("1") [("2") [("4") t t] t] [("3") [("5") t t] [("6") t t]]]]
@ -17,48 +15,51 @@ main = exampleTwo
-- 2 3 -- 2 3
-- / / \ -- / / \
-- 4 5 6 -- 4 5 6
--
label = node : head node label = \node : head node
left = node : (if (emptyList? node) left = (\node : if (emptyList? node)
[] []
(if (emptyList? (tail node)) (if (emptyList? (tail node))
[] []
(head (tail node)))) (head (tail node))))
right = node : (if (emptyList? node) right = (\node : if (emptyList? node)
[] []
(if (emptyList? (tail node)) (if (emptyList? (tail node))
[] []
(if (emptyList? (tail (tail node))) (if (emptyList? (tail (tail node)))
[] []
(head (tail (tail node)))))) (head (tail (tail node))))))
processLevel = y (self queue : if (emptyList? queue) processLevel = y (\self queue : if (emptyList? queue)
[] []
(pair (map label queue) (self (filter (pair (map label queue) (self (filter
(node : not? (emptyList? node)) (\node : not? (emptyList? node))
(append (map left queue) (map right queue)))))) (lconcat (map left queue) (map right queue))))))
levelOrderTraversal_ = a : processLevel (t a t) levelOrderTraversal_ = \a : processLevel (t a t)
toLineString = y (self levels : if (emptyList? levels) toLineString = y (\self levels : if (emptyList? levels)
"" ""
(append (lconcat
(append (map (x : append x " ") (head levels)) "") (lconcat (map (\x : lconcat x " ") (head levels)) "")
(if (emptyList? (tail levels)) "" (append (t (t 10 t) t) (self (tail levels)))))) (if (emptyList? (tail levels)) "" (lconcat (t (t 10 t) t) (self (tail levels))))))
levelOrderToString = s : toLineString (levelOrderTraversal_ s) levelOrderToString = \s : toLineString (levelOrderTraversal_ s)
flatten = foldl (acc x : append acc x) "" flatten = foldl (\acc x : lconcat acc x) ""
levelOrderTraversal = s : append (t 10 t) (flatten (levelOrderToString s)) levelOrderTraversal = \s : lconcat (t 10 t) (flatten (levelOrderToString s))
exampleOne = levelOrderTraversal [("1") exampleOne = levelOrderTraversal [("1")
[("2") [("4") t t] t] [("2") [("4") t t] t]
[("3") [("5") t t] [("6") t t]]] [("3") [("5") t t] [("6") t t]]]
exampleTwo = levelOrderTraversal [("1") exampleTwo = levelOrderTraversal [("1")
[("2") [("4") [("8") t t] [("9") t t]] [("2") [("4") [("8") t t] [("9") t t]]
[("6") [("10") t t] [("12") t t]]] [("6") [("10") t t] [("12") t t]]]
[("3") [("5") [("11") t t] t] [("7") t t]]] [("3") [("5") [("11") t t] t] [("7") t t]]]
exampleTwo

View File

@ -1,37 +0,0 @@
!import "../lib/patterns.tri" !Local
-- We can do conditional pattern matching by providing a list of lists, where
-- each sublist contains a boolean expression and a function to return if said
-- boolean expression evaluates to true.
value = 42
main = match value [[(equal? "Hello") (_ : ", world!")] [(equal? 42) (_ : "The answer.")]]
-- < main
-- > "The answer."
matchExample = (x : match x
[[(equal? 1) (_ : "one")]
[(equal? 2) (_ : "two")]
[(equal? 3) (_ : "three")]
[(equal? 4) (_ : "four")]
[(equal? 5) (_ : "five")]
[(equal? 6) (_ : "six")]
[(equal? 7) (_ : "seven")]
[(equal? 8) (_ : "eight")]
[(equal? 9) (_ : "nine")]
[(equal? 10) (_ : "ten")]
[ otherwise (_ : "I ran out of fingers!")]])
-- < matchExample 3
-- > "three"
-- < matchExample 5
-- > "five"
-- < matchExample 9
-- > "nine"
-- < matchExample 11
-- > "I ran out of fingers!"
-- < matchExample "three"
-- > "I ran out of fingers!"
-- < matchExample [("hello") ("world")]
-- > "I ran out of fingers!"

View File

@ -1,11 +1,21 @@
!import "../lib/base.tri" !Local compose = \f g x : f (g x)
!import "../lib/list.tri" !Local
main = size size succ = y (\self :
triage
1
t
(triage
(t (t t))
(\_ tail : t t (self tail))
t))
size = x : y (self x : compose succ (triage size = (\x :
id (y (\self x :
self compose succ
(x y : compose (self x) (self y)) (triage
x) (\x : x)
) x 0 self
(\x y : compose (self x) (self y))
x)) x 0))
size size

View File

@ -1,7 +1,3 @@
!import "../lib/base.tri" !Local
!import "../lib/list.tri" !Local
main = toSource not?
-- Thanks to intensionality, we can inspect the structure of a given value -- Thanks to intensionality, we can inspect the structure of a given value
-- even if it's a function. This includes lambdas which are eliminated to -- even if it's a function. This includes lambdas which are eliminated to
-- Tree Calculus (TC) terms during evaluation. -- Tree Calculus (TC) terms during evaluation.
@ -18,25 +14,25 @@ main = toSource not?
sourceLeaf = t (head "t") sourceLeaf = t (head "t")
-- Stem case -- Stem case
sourceStem = convert : (a rest : sourceStem = (\convert : (\a rest :
t (head "(") -- Start with a left parenthesis "(". t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t" (t (head "t") -- Add a "t"
(t (head " ") -- Add a space. (t (head " ") -- Add a space.
(convert a -- Recursively convert the argument. (convert a -- Recursively convert the argument.
(t (head ")") rest))))) -- Close with ")" and append the rest. (t (head ")") rest)))))) -- Close with ")" and append the rest.
-- Fork case -- Fork case
sourceFork = convert : (a b rest : sourceFork = (\convert : (\a b rest :
t (head "(") -- Start with a left parenthesis "(". t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t" (t (head "t") -- Add a "t"
(t (head " ") -- Add a space. (t (head " ") -- Add a space.
(convert a -- Recursively convert the first arg. (convert a -- Recursively convert the first arg.
(t (head " ") -- Add another space. (t (head " ") -- Add another space.
(convert b -- Recursively convert the second arg. (convert b -- Recursively convert the second arg.
(t (head ")") rest))))))) -- Close with ")" and append the rest. (t (head ")") rest)))))))) -- Close with ")" and append the rest.
-- Wrapper around triage -- Wrapper around triage
toSource_ = y (self arg : toSource_ = y (\self arg :
triage triage
sourceLeaf -- `triage` "a" case, Leaf sourceLeaf -- `triage` "a" case, Leaf
(sourceStem self) -- `triage` "b" case, Stem (sourceStem self) -- `triage` "b" case, Stem
@ -44,7 +40,7 @@ toSource_ = y (self arg :
arg) -- The term to be inspected arg) -- The term to be inspected
-- toSource takes a single TC term and returns a String -- toSource takes a single TC term and returns a String
toSource = v : toSource_ v "" toSource = \v : toSource_ v ""
exampleOne = toSource true -- OUT: "(t t)" exampleOne = toSource true -- OUT: "(t t)"
exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))" exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"

View File

@ -34,7 +34,6 @@
devShells.default = pkgs.mkShell { devShells.default = pkgs.mkShell {
buildInputs = with pkgs; [ buildInputs = with pkgs; [
haskellPackages.cabal-install haskellPackages.cabal-install
haskellPackages.ghc-events
haskellPackages.ghcid haskellPackages.ghcid
customGHC customGHC
upx upx

View File

@ -1,74 +1,83 @@
false = t false = t
_ = t _ = t
true = t t true = t t
id = a : a k = t t
const = a b : a i = t (t k) t
s = t (t (k t)) t
m = s i i
b = s (k s) k
c = s (s (k s) (s (k k) s)) (k k)
id = \a : a
pair = t pair = t
if = cond then else : t (t else (t t then)) t cond if = \cond then else : t (t else (t t then)) t cond
y = ((mut wait fun : wait mut (x : fun (wait mut x))) y = ((\mut wait fun : wait mut (\x : fun (wait mut x)))
(x : x x) (\x : x x)
(a0 a1 a2 : t (t a0) (t t a2) a1)) (\a0 a1 a2 : t (t a0) (t t a2) a1))
compose = f g x : f (g x) triage = \leaf stem fork : t (t leaf stem) fork
test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork")
triage = leaf stem fork : t (t leaf stem) fork matchBool = (\ot of : triage
test = triage "Leaf" (_ : "Stem") (_ _ : "Fork") of
(\_ : ot)
matchBool = (ot of : triage (\_ _ : ot)
of
(_ : ot)
(_ _ : ot)
) )
lAnd = (triage matchList = \a b : triage a _ b
(_ : false)
(_ x : x)
(_ _ x : x))
lOr = (triage matchPair = \a : triage _ _ a
(x : x)
(_ _ : true)
(_ _ _ : true))
matchPair = a : triage _ _ a
not? = matchBool false true not? = matchBool false true
and? = matchBool id (_ : false) and? = matchBool id (\_ : false)
emptyList? = matchList true (\_ _ : false)
or? = (x z : head = matchList t (\head _ : head)
matchBool tail = matchList t (\_ tail : tail)
(matchBool true true z)
(matchBool true false z)
x)
xor? = (x z : lconcat = y (\self : matchList
matchBool (\k : k)
(matchBool false true z) (\h r k : pair h (self r k)))
(matchBool true false z)
x)
equal? = y (self : triage lAnd = (triage
(triage (\_ : false)
true (\_ x : x)
(_ : false) (\_ _ x : x))
(_ _ : false))
(ax :
triage
false
(self ax)
(_ _ : false))
(ax ay :
triage
false
(_ : false)
(bx by : lAnd (self ax bx) (self ay by))))
succ = y (self : lOr = (triage
triage (\x : x)
1 (\_ _ : true)
t (\_ _ _ : true))
(triage
(t (t t)) map_ = y (\self :
(_ tail : t t (self tail)) matchList
t)) (\_ : t)
(\head tail f : pair (f head) (self tail f)))
map = \f l : map_ l f
equal? = y (\self : triage
(triage
true
(\_ : false)
(\_ _ : false))
(\ax :
triage
false
(self ax)
(\_ _ : false))
(\ax ay :
triage
false
(\_ : false)
(\bx by : lAnd (self ax bx) (self ay by))))
filter_ = y (\self : matchList
(\_ : t)
(\head tail f : matchBool (t head) i (f head) (self tail f)))
filter = \f l : filter_ l f
foldl_ = y (\self f l x : matchList (\acc : acc) (\head tail acc : self f tail (f acc head)) l x)
foldl = \f x l : foldl_ f l x
foldr_ = y (\self x f l : matchList x (\head tail : f (self x f tail) head) l)
foldr = \f x l : foldr_ x f l

View File

@ -1,70 +0,0 @@
!import "base.tri" !Local
_ = t
matchList = a b : triage a _ b
emptyList? = matchList true (_ _ : false)
head = matchList t (head _ : head)
tail = matchList t (_ tail : tail)
append = y (self : matchList
(k : k)
(h r k : pair h (self r k)))
lExist? = y (self x : matchList
false
(h z : or? (equal? x h) (self x z)))
map_ = y (self :
matchList
(_ : t)
(head tail f : pair (f head) (self tail f)))
map = f l : map_ l f
filter_ = y (self : matchList
(_ : t)
(head tail f : matchBool (t head) id (f head) (self tail f)))
filter = f l : filter_ l f
foldl_ = y (self f l x : matchList (acc : acc) (head tail acc : self f tail (f acc head)) l x)
foldl = f x l : foldl_ f l x
foldr_ = y (self x f l : matchList x (head tail : f (self x f tail) head) l)
foldr = f x l : foldr_ x f l
length = y (self : matchList
0
(_ tail : succ (self tail)))
reverse = y (self : matchList
t
(head tail : append (self tail) (pair head t)))
snoc = y (self x : matchList
(pair x t)
(h z : pair h (self x z)))
count = y (self x : matchList
0
(h z : matchBool
(succ (self x z))
(self x z)
(equal? x h)))
last = y (self : matchList
t
(hd tl : matchBool
hd
(self tl)
(emptyList? tl)))
all? = y (self pred : matchList
true
(h z : and? (pred h) (self pred z)))
any? = y (self pred : matchList
false
(h z : or? (pred h) (self pred z)))
intersect = xs ys : filter (x : lExist? x ys) xs

View File

@ -1,24 +0,0 @@
!import "base.tri" !Local
!import "list.tri" List
match_ = y (self value patterns :
triage
t
(_ : t)
(pattern rest :
triage
t
(_ : t)
(test result :
if (test value)
(result value)
(self value rest))
pattern)
patterns)
match = (value patterns :
match_ value (List.map (sublist :
pair (List.head sublist) (List.head (List.tail sublist)))
patterns))
otherwise = const (t t)

View File

@ -3,43 +3,38 @@ module Eval where
import Parser import Parser
import Research import Research
import Data.List (partition, (\\))
import Data.Map (Map) import Data.Map (Map)
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Set as Set import qualified Data.Set as Set
evalSingle :: Env -> TricuAST -> Env evalSingle :: Env -> TricuAST -> Env
evalSingle env term evalSingle env term
| SDef name [] body <- term | SFunc name [] body <- term =
= case Map.lookup name env of if
Just existingValue | Map.member name env ->
| existingValue == evalAST env body -> env errorWithoutStackTrace $
| otherwise -> errorWithoutStackTrace $ "Error: Identifier '" ++ name ++ "' is already defined."
"Unable to rebind immutable identifier: " ++ name | otherwise ->
Nothing -> let res = evalAST env body
let res = evalAST env body in Map.insert "__result" res (Map.insert name res env)
in Map.insert "!result" res (Map.insert name res env) | SApp func arg <- term =
| SApp func arg <- term let res = apply (evalAST env func) (evalAST env arg)
= let res = apply (evalAST env func) (evalAST env arg) in Map.insert "__result" res env
in Map.insert "!result" res env | SVar name <- term =
| SVar name <- term case Map.lookup name env of
= case Map.lookup name env of Just v -> Map.insert "__result" v env
Just v -> Map.insert "!result" v env Nothing -> errorWithoutStackTrace $ "Variable `" ++ name ++ "` not defined"
Nothing -> | otherwise =
errorWithoutStackTrace $ "Variable `" ++ name ++ "` not defined\n\ Map.insert "__result" (evalAST env term) env
\This error should never occur here. Please report this as an issue."
| otherwise
= Map.insert "!result" (evalAST env term) env
evalTricu :: Env -> [TricuAST] -> Env evalTricu :: Env -> [TricuAST] -> Env
evalTricu env x = go env (reorderDefs env x) evalTricu env [] = env
where evalTricu env [x] =
go env [] = env let updatedEnv = evalSingle env x
go env [x] = in Map.insert "__result" (result updatedEnv) updatedEnv
let updatedEnv = evalSingle env x evalTricu env (x:xs) =
in Map.insert "!result" (result updatedEnv) updatedEnv evalTricu (evalSingle env x) xs
go env (x:xs) =
evalTricu (evalSingle env x) xs
evalAST :: Env -> TricuAST -> T evalAST :: Env -> TricuAST -> T
evalAST env term evalAST env term
@ -66,18 +61,17 @@ elimLambda = go
go (SLambda [v] (SApp f (SVar x))) go (SLambda [v] (SApp f (SVar x)))
| v == x && not (isFree v f) = elimLambda f | v == x && not (isFree v f) = elimLambda f
-- Triage optimization -- Triage optimization
go (SLambda [a] (SLambda [b] (SLambda [c] body))) go (SLambda [a] (SLambda [b] (SLambda [c] body)))
| body == triageBody = _TRIAGE | body == triageBody = _TRIAGE
where where
triageBody = triageBody =
SApp (SApp TLeaf (SApp (SApp TLeaf (SVar a)) (SVar b))) (SVar c) (SApp (SApp TLeaf (SApp (SApp TLeaf (SVar a)) (SVar b))) (SVar c))
-- Composition optimization -- Composition optimization
go (SLambda [f] (SLambda [g] (SLambda [x] body))) go (SLambda [f] (SLambda [g] (SLambda [x] body)))
| body == SApp (SVar f) (SApp (SVar g) (SVar x)) = _B | body == composeBody = _COMPOSE
where
composeBody = SApp (SVar f) (SApp (SVar g) (SVar x))
-- General elimination -- General elimination
go (SLambda [v] (SList xs))
= elimLambda (SLambda [v] (foldr wrapTLeaf TLeaf xs))
where wrapTLeaf m r = SApp (SApp TLeaf m) r
go (SLambda (v:vs) body) go (SLambda (v:vs) body)
| null vs = toSKI v (elimLambda body) | null vs = toSKI v (elimLambda body)
| otherwise = elimLambda (SLambda [v] (SLambda vs body)) | otherwise = elimLambda (SLambda [v] (SLambda vs body))
@ -97,101 +91,22 @@ elimLambda = go
_S = parseSingle "t (t (t t t)) t" _S = parseSingle "t (t (t t t)) t"
_K = parseSingle "t t" _K = parseSingle "t t"
_I = parseSingle "t (t (t t)) t" _I = parseSingle "t (t (t t)) t"
_B = parseSingle "t (t (t t (t (t (t t t)) t))) (t t)"
_TRIAGE = parseSingle "t (t (t t (t (t (t t t))))) t" _TRIAGE = parseSingle "t (t (t t (t (t (t t t))))) t"
_COMPOSE = parseSingle "t (t (t t (t (t (t t t)) t))) (t t)"
isFree :: String -> TricuAST -> Bool
isFree x = Set.member x . freeVars isFree x = Set.member x . freeVars
freeVars (SVar v ) = Set.singleton v
freeVars :: TricuAST -> Set.Set String freeVars (SInt _ ) = Set.empty
freeVars (SVar v ) = Set.singleton v freeVars (SStr _ ) = Set.empty
freeVars (SInt _ ) = Set.empty freeVars (SList s ) = foldMap freeVars s
freeVars (SStr _ ) = Set.empty freeVars (SApp f a ) = freeVars f <> freeVars a
freeVars (SList s ) = foldMap freeVars s freeVars (TLeaf ) = Set.empty
freeVars (SApp f a ) = freeVars f <> freeVars a freeVars (SFunc _ _ b) = freeVars b
freeVars TLeaf = Set.empty freeVars (TStem t ) = freeVars t
freeVars (SDef _ _ b) = freeVars b freeVars (TFork l r ) = freeVars l <> freeVars r
freeVars (TStem t ) = freeVars t freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v
freeVars (TFork l r ) = freeVars l <> freeVars r
freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v
freeVars _ = Set.empty
reorderDefs :: Env -> [TricuAST] -> [TricuAST]
reorderDefs env defs
| not (null missingDeps) =
errorWithoutStackTrace $
"Missing dependencies detected: " ++ show missingDeps
| otherwise = orderedDefs ++ others
where
(defsOnly, others) = partition isDef defs
defNames = [ name | SDef name _ _ <- defsOnly ]
defsWithFreeVars = [(def, freeVars body) | def@(SDef _ _ body) <- defsOnly]
graph = buildDepGraph defsOnly
sortedDefs = sortDeps graph
defMap = Map.fromList [(name, def) | def@(SDef name _ _) <- defsOnly]
orderedDefs = map (\name -> defMap Map.! name) sortedDefs
freeVarsDefs = foldMap snd defsWithFreeVars
freeVarsOthers = foldMap freeVars others
allFreeVars = freeVarsDefs <> freeVarsOthers
validNames = Set.fromList defNames `Set.union` Set.fromList (Map.keys env)
missingDeps = Set.toList (allFreeVars `Set.difference` validNames)
isDef (SDef _ _ _) = True
isDef _ = False
buildDepGraph :: [TricuAST] -> Map.Map String (Set.Set String)
buildDepGraph topDefs
| not (null conflictingDefs) =
errorWithoutStackTrace $
"Conflicting definitions detected: " ++ show conflictingDefs
| otherwise =
Map.fromList
[ (name, depends topDefs (SDef name [] body))
| SDef name _ body <- topDefs]
where
defsMap = Map.fromListWith (++)
[(name, [(name, body)]) | SDef name _ body <- topDefs]
conflictingDefs =
[ name
| (name, defs) <- Map.toList defsMap
, let bodies = map snd defs
, not $ all (== head bodies) (tail bodies)
]
sortDeps :: Map.Map String (Set.Set String) -> [String]
sortDeps graph = go [] Set.empty (Map.keys graph)
where
go sorted sortedSet [] = sorted
go sorted sortedSet remaining =
let ready = [ name | name <- remaining
, let deps = Map.findWithDefault Set.empty name graph
, Set.isSubsetOf deps sortedSet ]
notReady = remaining \\ ready
in if null ready
then errorWithoutStackTrace
"ERROR: Cyclic dependency detected and prohibited.\n\
\RESOLVE: Use nested lambdas."
else go (sorted ++ ready)
(Set.union sortedSet (Set.fromList ready))
notReady
depends :: [TricuAST] -> TricuAST -> Set.Set String
depends topDefs (SDef _ _ body) =
Set.intersection
(Set.fromList [n | SDef n _ _ <- topDefs])
(freeVars body)
depends _ _ = Set.empty
result :: Env -> T result :: Env -> T
result r = case Map.lookup "!result" r of result r = case Map.lookup "__result" r of
Just a -> a Just a -> a
Nothing -> errorWithoutStackTrace "No !result field found in provided env" Nothing -> errorWithoutStackTrace "No __result field found in provided environment"
mainResult :: Env -> T
mainResult r = case Map.lookup "main" r of
Just a -> a
Nothing -> errorWithoutStackTrace "No valid definition for `main` found."

View File

@ -1,158 +1,30 @@
module FileEval where module FileEval where
import Eval import Eval
import Lexer
import Parser import Parser
import Research import Research
import Data.List (partition)
import Data.Maybe (mapMaybe)
import Control.Monad (foldM)
import System.IO import System.IO
import System.FilePath (takeDirectory, normalise, (</>))
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Set as Set
extractMain :: Env -> Either String T
extractMain env =
case Map.lookup "main" env of
Just result -> Right result
Nothing -> Left "No `main` function detected"
processImports :: Set.Set FilePath -> FilePath -> FilePath -> [TricuAST]
-> Either String ([TricuAST], [(FilePath, String, FilePath)])
processImports seen base currentPath asts =
let (imports, nonImports) = partition isImp asts
importPaths = mapMaybe getImportInfo imports
in if currentPath `Set.member` seen
then Left $ "Encountered cyclic import: " ++ currentPath
else Right (nonImports, importPaths)
where
isImp (SImport _ _) = True
isImp _ = False
getImportInfo (SImport p n) = Just (p, n, makeRelativeTo currentPath p)
getImportInfo _ = Nothing
evaluateFileResult :: FilePath -> IO T evaluateFileResult :: FilePath -> IO T
evaluateFileResult filePath = do evaluateFileResult filePath = do
contents <- readFile filePath contents <- readFile filePath
let tokens = lexTricu contents let asts = parseTricu contents
case parseProgram tokens of let finalEnv = evalTricu Map.empty asts
Left err -> errorWithoutStackTrace (handleParseError err) case Map.lookup "__result" finalEnv of
Right ast -> do Just finalResult -> return finalResult
processedAst <- preprocessFile filePath Nothing -> errorWithoutStackTrace "No expressions to evaluate found"
let finalEnv = evalTricu Map.empty processedAst
case extractMain finalEnv of
Right result -> return result
Left err -> errorWithoutStackTrace err
evaluateFile :: FilePath -> IO Env evaluateFile :: FilePath -> IO Env
evaluateFile filePath = do evaluateFile filePath = do
contents <- readFile filePath contents <- readFile filePath
let tokens = lexTricu contents let asts = parseTricu contents
case parseProgram tokens of pure $ evalTricu Map.empty asts
Left err -> errorWithoutStackTrace (handleParseError err)
Right ast -> do
ast <- preprocessFile filePath
pure $ evalTricu Map.empty ast
evaluateFileWithContext :: Env -> FilePath -> IO Env evaluateFileWithContext :: Env -> FilePath -> IO Env
evaluateFileWithContext env filePath = do evaluateFileWithContext env filePath = do
contents <- readFile filePath contents <- readFile filePath
let tokens = lexTricu contents let asts = parseTricu contents
case parseProgram tokens of pure $ evalTricu env asts
Left err -> errorWithoutStackTrace (handleParseError err)
Right ast -> do
ast <- preprocessFile filePath
pure $ evalTricu env ast
preprocessFile :: FilePath -> IO [TricuAST]
preprocessFile p = preprocessFile' Set.empty p p
preprocessFile' :: Set.Set FilePath -> FilePath -> FilePath -> IO [TricuAST]
preprocessFile' seen base currentPath = do
contents <- readFile currentPath
let tokens = lexTricu contents
case parseProgram tokens of
Left err -> errorWithoutStackTrace (handleParseError err)
Right ast ->
case processImports seen base currentPath ast of
Left err -> errorWithoutStackTrace err
Right (nonImports, importPaths) -> do
let seen' = Set.insert currentPath seen
imported <- concat <$> mapM (processImportPath seen' base) importPaths
pure $ imported ++ nonImports
where
processImportPath seen base (path, name, importPath) = do
ast <- preprocessFile' seen base importPath
pure $ map (nsDefinition (if name == "!Local" then "" else name))
$ filter (not . isImp) ast
isImp (SImport _ _) = True
isImp _ = False
makeRelativeTo :: FilePath -> FilePath -> FilePath
makeRelativeTo f i =
let d = takeDirectory f
in normalise $ d </> i
nsDefinitions :: String -> [TricuAST] -> [TricuAST]
nsDefinitions moduleName = map (nsDefinition moduleName)
nsDefinition :: String -> TricuAST -> TricuAST
nsDefinition "" def = def
nsDefinition moduleName (SDef name args body)
| isPrefixed name = SDef name args (nsBody moduleName body)
| otherwise = SDef (nsVariable moduleName name)
args (nsBody moduleName body)
nsDefinition moduleName other =
nsBody moduleName other
nsBody :: String -> TricuAST -> TricuAST
nsBody moduleName (SVar name)
| isPrefixed name = SVar name
| otherwise = SVar (nsVariable moduleName name)
nsBody moduleName (SApp func arg) =
SApp (nsBody moduleName func) (nsBody moduleName arg)
nsBody moduleName (SLambda args body) =
SLambda args (nsBodyScoped moduleName args body)
nsBody moduleName (SList items) =
SList (map (nsBody moduleName) items)
nsBody moduleName (TFork left right) =
TFork (nsBody moduleName left) (nsBody moduleName right)
nsBody moduleName (TStem subtree) =
TStem (nsBody moduleName subtree)
nsBody moduleName (SDef name args body)
| isPrefixed name = SDef name args (nsBody moduleName body)
| otherwise = SDef (nsVariable moduleName name)
args (nsBody moduleName body)
nsBody _ other = other
nsBodyScoped :: String -> [String] -> TricuAST -> TricuAST
nsBodyScoped moduleName args body = case body of
SVar name ->
if name `elem` args
then SVar name
else nsBody moduleName (SVar name)
SApp func arg ->
SApp (nsBodyScoped moduleName args func) (nsBodyScoped moduleName args arg)
SLambda innerArgs innerBody ->
SLambda innerArgs (nsBodyScoped moduleName (args ++ innerArgs) innerBody)
SList items ->
SList (map (nsBodyScoped moduleName args) items)
TFork left right ->
TFork (nsBodyScoped moduleName args left)
(nsBodyScoped moduleName args right)
TStem subtree ->
TStem (nsBodyScoped moduleName args subtree)
SDef name innerArgs innerBody ->
SDef (nsVariable moduleName name) innerArgs
(nsBodyScoped moduleName (args ++ innerArgs) innerBody)
other -> other
isPrefixed :: String -> Bool
isPrefixed name = '.' `elem` name
nsVariable :: String -> String -> String
nsVariable "" name = name
nsVariable moduleName name = moduleName ++ "." ++ name

View File

@ -3,7 +3,6 @@ module Lexer where
import Research import Research
import Control.Monad (void) import Control.Monad (void)
import Data.Functor (($>))
import Data.Void import Data.Void
import Text.Megaparsec import Text.Megaparsec
import Text.Megaparsec.Char hiding (space) import Text.Megaparsec.Char hiding (space)
@ -13,107 +12,21 @@ import qualified Data.Set as Set
type Lexer = Parsec Void String type Lexer = Parsec Void String
tricuLexer :: Lexer [LToken]
tricuLexer = do
sc
header <- many $ do
tok <- choice
[ try lImport
, lnewline
]
sc
pure tok
tokens <- many $ do
tok <- choice tricuLexer'
sc
pure tok
sc
eof
pure (header ++ tokens)
where
tricuLexer' =
[ try lnewline
, try namespace
, try dot
, try identifier
, try keywordT
, try integerLiteral
, try stringLiteral
, assign
, colon
, openParen
, closeParen
, openBracket
, closeBracket
]
lexTricu :: String -> [LToken]
lexTricu input = case runParser tricuLexer "" input of
Left err -> errorWithoutStackTrace $ "Lexical error:\n" ++ errorBundlePretty err
Right tokens -> tokens
keywordT :: Lexer LToken keywordT :: Lexer LToken
keywordT = string "t" *> notFollowedBy alphaNumChar $> LKeywordT keywordT = string "t" *> notFollowedBy alphaNumChar *> pure LKeywordT
identifier :: Lexer LToken identifier :: Lexer LToken
identifier = do identifier = do
first <- lowerChar <|> char '_' first <- letterChar <|> char '_'
rest <- many $ letterChar rest <- many $ letterChar
<|> digitChar <|> char '_' <|> char '-' <|> char '?' <|> digitChar
<|> char '$' <|> char '#' <|> char '@' <|> char '%' <|> char '_' <|> char '-' <|> char '?' <|> char '!'
<|> char '$' <|> char '#' <|> char '@' <|> char '%'
let name = first : rest let name = first : rest
if name == "t" || name == "!result" if (name == "t" || name == "__result")
then fail "Keywords (`t`, `!result`) cannot be used as an identifier" then fail "Keywords (`t`, `__result`) cannot be used as an identifier"
else return (LIdentifier name) else return (LIdentifier name)
namespace :: Lexer LToken
namespace = do
name <- try (string "!Local") <|> do
first <- upperChar
rest <- many (letterChar <|> digitChar)
return (first:rest)
return (LNamespace name)
dot :: Lexer LToken
dot = char '.' $> LDot
lImport :: Lexer LToken
lImport = do
_ <- string "!import"
space1
LStringLiteral path <- stringLiteral
space1
LNamespace name <- namespace
return (LImport path name)
assign :: Lexer LToken
assign = char '=' $> LAssign
colon :: Lexer LToken
colon = char ':' $> LColon
openParen :: Lexer LToken
openParen = char '(' $> LOpenParen
closeParen :: Lexer LToken
closeParen = char ')' $> LCloseParen
openBracket :: Lexer LToken
openBracket = char '[' $> LOpenBracket
closeBracket :: Lexer LToken
closeBracket = char ']' $> LCloseBracket
lnewline :: Lexer LToken
lnewline = char '\n' $> LNewline
sc :: Lexer ()
sc = space
(void $ takeWhile1P (Just "space") (\c -> c == ' ' || c == '\t'))
(skipLineComment "--")
(skipBlockComment "|-" "-|")
integerLiteral :: Lexer LToken integerLiteral :: Lexer LToken
integerLiteral = do integerLiteral = do
num <- some digitChar num <- some digitChar
@ -122,22 +35,67 @@ integerLiteral = do
stringLiteral :: Lexer LToken stringLiteral :: Lexer LToken
stringLiteral = do stringLiteral = do
char '"' char '"'
content <- manyTill Lexer.charLiteral (char '"') content <- many (noneOf ['"'])
char '"' --"
return (LStringLiteral content) return (LStringLiteral content)
charLiteral :: Lexer Char assign :: Lexer LToken
charLiteral = escapedChar <|> normalChar assign = char '=' *> pure LAssign
where
normalChar = noneOf ['"', '\\'] colon :: Lexer LToken
escapedChar = do colon = char ':' *> pure LColon
void $ char '\\'
c <- oneOf ['n', 't', 'r', 'f', 'b', '\\', '"', '\''] backslash :: Lexer LToken
return $ case c of backslash = char '\\' *> pure LBackslash
'n' -> '\n'
't' -> '\t' openParen :: Lexer LToken
'r' -> '\r' openParen = char '(' *> pure LOpenParen
'f' -> '\f'
'b' -> '\b' closeParen :: Lexer LToken
'\\' -> '\\' closeParen = char ')' *> pure LCloseParen
'"' -> '"'
'\'' -> '\'' openBracket :: Lexer LToken
openBracket = char '[' *> pure LOpenBracket
closeBracket :: Lexer LToken
closeBracket = char ']' *> pure LCloseBracket
lnewline :: Lexer LToken
lnewline = char '\n' *> pure LNewline
sc :: Lexer ()
sc = space
(void $ takeWhile1P (Just "space") (\c -> c == ' ' || c == '\t'))
(skipLineComment "--")
(skipBlockComment "|-" "-|")
tricuLexer :: Lexer [LToken]
tricuLexer = do
sc
tokens <- many $ do
tok <- choice tricuLexer'
sc
pure tok
sc
eof
pure tokens
where
tricuLexer' =
[ try lnewline
, try identifier
, try keywordT
, try integerLiteral
, try stringLiteral
, assign
, colon
, backslash
, openParen
, closeParen
, openBracket
, closeBracket
]
lexTricu :: String -> [LToken]
lexTricu input = case runParser tricuLexer "" input of
Left err -> errorWithoutStackTrace $ "Lexical error:\n" ++ errorBundlePretty err
Right tokens -> tokens

View File

@ -1,6 +1,6 @@
module Main where module Main where
import Eval (evalTricu, mainResult, result) import Eval (evalTricu, result)
import FileEval import FileEval
import Parser (parseTricu) import Parser (parseTricu)
import REPL import REPL
@ -8,9 +8,7 @@ import Research
import Control.Monad (foldM) import Control.Monad (foldM)
import Control.Monad.IO.Class (liftIO) import Control.Monad.IO.Class (liftIO)
import Data.Version (showVersion)
import Text.Megaparsec (runParser) import Text.Megaparsec (runParser)
import Paths_tricu (version)
import System.Console.CmdArgs import System.Console.CmdArgs
import qualified Data.Map as Map import qualified Data.Map as Map
@ -18,7 +16,7 @@ import qualified Data.Map as Map
data TricuArgs data TricuArgs
= Repl = Repl
| Evaluate { file :: [FilePath], form :: EvaluatedForm } | Evaluate { file :: [FilePath], form :: EvaluatedForm }
| TDecode { file :: [FilePath] } | Decode { file :: [FilePath] }
deriving (Show, Data, Typeable) deriving (Show, Data, Typeable)
replMode :: TricuArgs replMode :: TricuArgs
@ -33,7 +31,7 @@ evaluateMode = Evaluate
\ Defaults to stdin." \ Defaults to stdin."
&= name "f" &= typ "FILE" &= name "f" &= typ "FILE"
, form = TreeCalculus &= typ "FORM" , form = TreeCalculus &= typ "FORM"
&= help "Optional output form: (tree|fsl|ast|ternary|ascii|decode).\n \ &= help "Optional output form: (tree|fsl|ast|ternary|ascii).\n \
\ Defaults to tricu-compatible `t` tree form." \ Defaults to tricu-compatible `t` tree form."
&= name "t" &= name "t"
} }
@ -42,7 +40,7 @@ evaluateMode = Evaluate
&= name "eval" &= name "eval"
decodeMode :: TricuArgs decodeMode :: TricuArgs
decodeMode = TDecode decodeMode = Decode
{ file = def { file = def
&= help "Optional input file path to attempt decoding.\n \ &= help "Optional input file path to attempt decoding.\n \
\ Defaults to stdin." \ Defaults to stdin."
@ -54,17 +52,16 @@ decodeMode = TDecode
main :: IO () main :: IO ()
main = do main = do
let versionStr = "tricu Evaluator and REPL " ++ showVersion version
args <- cmdArgs $ modes [replMode, evaluateMode, decodeMode] args <- cmdArgs $ modes [replMode, evaluateMode, decodeMode]
&= help "tricu: Exploring Tree Calculus" &= help "tricu: Exploring Tree Calculus"
&= program "tricu" &= program "tricu"
&= summary versionStr &= summary "tricu Evaluator and REPL"
&= versionArg [explicit, name "version", summary versionStr]
case args of case args of
Repl -> do Repl -> do
putStrLn "Welcome to the tricu REPL" putStrLn "Welcome to the tricu REPL"
putStrLn "You can exit with `CTRL+D` or the `!exit` command.`" putStrLn "You can exit with `CTRL+D` or the `:_exit` command.`"
repl Map.empty library <- liftIO $ evaluateFile "./lib/base.tri"
repl $ Map.delete "__result" library
Evaluate { file = filePaths, form = form } -> do Evaluate { file = filePaths, form = form } -> do
result <- case filePaths of result <- case filePaths of
[] -> do [] -> do
@ -73,14 +70,15 @@ main = do
(filePath:restFilePaths) -> do (filePath:restFilePaths) -> do
initialEnv <- evaluateFile filePath initialEnv <- evaluateFile filePath
finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths
pure $ mainResult finalEnv pure $ result finalEnv
let fRes = formatResult form result let fRes = formatResult form result
putStr fRes putStr fRes
TDecode { file = filePaths } -> do Decode { file = filePaths } -> do
value <- case filePaths of value <- case filePaths of
[] -> getContents [] -> getContents
(filePath:_) -> readFile filePath (filePath:_) -> readFile filePath
putStrLn $ decodeResult $ result $ evalTricu Map.empty $ parseTricu value library <- liftIO $ evaluateFile "./lib/base.tri"
putStrLn $ decodeResult $ result $ evalTricu library $ parseTricu value
runTricu :: String -> T runTricu :: String -> T
runTricu input = runTricu input =

View File

@ -3,12 +3,12 @@ module Parser where
import Lexer import Lexer
import Research import Research
import Control.Monad (void) import Control.Monad (void)
import Control.Monad.State import Control.Monad.State
import Data.List.NonEmpty (toList) import Data.List.NonEmpty (toList)
import Data.Void (Void) import Data.Void (Void)
import Text.Megaparsec import Text.Megaparsec
import Text.Megaparsec.Error (ParseErrorBundle, errorBundlePretty) import Text.Megaparsec.Error (ParseErrorBundle, errorBundlePretty)
import qualified Data.Set as Set import qualified Data.Set as Set
data PState = PState data PState = PState
@ -74,22 +74,9 @@ parseSingle input =
parseProgramM :: ParserM [TricuAST] parseProgramM :: ParserM [TricuAST]
parseProgramM = do parseProgramM = do
skipMany topLevelNewline skipMany topLevelNewline
importNodes <- many (do
node <- parseImportM
skipMany topLevelNewline
return node)
skipMany topLevelNewline
exprs <- sepEndBy parseOneExpression (some topLevelNewline) exprs <- sepEndBy parseOneExpression (some topLevelNewline)
skipMany topLevelNewline skipMany topLevelNewline
return (importNodes ++ exprs) return exprs
parseImportM :: ParserM TricuAST
parseImportM = do
LImport filePath moduleName <- satisfyM isImport
pure (SImport filePath moduleName)
where
isImport (LImport _ _) = True
isImport _ = False
parseOneExpression :: ParserM TricuAST parseOneExpression :: ParserM TricuAST
parseOneExpression = scnParserM *> parseExpressionM parseOneExpression = scnParserM *> parseExpressionM
@ -125,11 +112,12 @@ parseFunctionM = do
_ <- satisfyM (== LAssign) _ <- satisfyM (== LAssign)
scnParserM scnParserM
body <- parseExpressionM body <- parseExpressionM
pure (SDef name (map getIdentifier args) body) pure (SFunc name (map getIdentifier args) body)
parseLambdaM :: ParserM TricuAST parseLambdaM :: ParserM TricuAST
parseLambdaM = do parseLambdaM = do
let ident = (\case LIdentifier _ -> True; _ -> False) let ident = (\case LIdentifier _ -> True; _ -> False)
_ <- satisfyM (== LBackslash)
params <- some (satisfyM ident) params <- some (satisfyM ident)
_ <- satisfyM (== LColon) _ <- satisfyM (== LColon)
scnParserM scnParserM
@ -144,11 +132,11 @@ parseLambdaExpressionM = choice
parseAtomicLambdaM :: ParserM TricuAST parseAtomicLambdaM :: ParserM TricuAST
parseAtomicLambdaM = choice parseAtomicLambdaM = choice
[ try parseLambdaM [ parseVarM
, parseVarM
, parseTreeLeafM , parseTreeLeafM
, parseLiteralM , parseLiteralM
, parseListLiteralM , parseListLiteralM
, try parseLambdaM
, between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM , between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM
] ]
@ -204,8 +192,7 @@ parseTreeLeafOrParenthesizedM = choice
parseAtomicM :: ParserM TricuAST parseAtomicM :: ParserM TricuAST
parseAtomicM = choice parseAtomicM = choice
[ try parseLambdaM [ parseVarM
, parseVarM
, parseTreeLeafM , parseTreeLeafM
, parseListLiteralM , parseListLiteralM
, parseGroupedM , parseGroupedM
@ -255,19 +242,12 @@ parseSingleItemM = do
parseVarM :: ParserM TricuAST parseVarM :: ParserM TricuAST
parseVarM = do parseVarM = do
token <- satisfyM (\case satisfyM (\case LIdentifier _ -> True; _ -> False) >>= \case
LNamespace _ -> True
LIdentifier _ -> True
_ -> False)
case token of
LNamespace ns -> do
_ <- satisfyM (== LDot)
LIdentifier name <- satisfyM (\case LIdentifier _ -> True; _ -> False)
pure $ SVar (ns ++ "." ++ name)
LIdentifier name LIdentifier name
| name == "t" || name == "!result" -> | name == "t" || name == "__result" ->
fail ("Reserved keyword: " ++ name ++ " cannot be assigned.") fail ("Reserved keyword: " ++ name ++ " cannot be assigned.")
| otherwise -> pure (SVar name) | otherwise ->
pure (SVar name)
_ -> fail "Unexpected token while parsing variable" _ -> fail "Unexpected token while parsing variable"
parseIntLiteralM :: ParserM TricuAST parseIntLiteralM :: ParserM TricuAST

View File

@ -6,185 +6,63 @@ import Lexer
import Parser import Parser
import Research import Research
import Control.Exception (IOException, SomeException, catch import Control.Exception (SomeException, catch)
, displayException)
import Control.Monad (forM_)
import Control.Monad.Catch (handle, MonadCatch)
import Control.Monad.IO.Class (liftIO) import Control.Monad.IO.Class (liftIO)
import Control.Monad.Trans.Class (lift) import Data.Char (isSpace)
import Control.Monad.Trans.Maybe (MaybeT(..), runMaybeT) import Data.List (dropWhile, dropWhileEnd, intercalate)
import Data.Char (isSpace, isUpper)
import Data.List (dropWhile, dropWhileEnd, isPrefixOf)
import Data.Version (showVersion)
import Paths_tricu (version)
import System.Console.Haskeline import System.Console.Haskeline
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Text as T
import qualified Data.Text.IO as T
repl :: Env -> IO () repl :: Env -> IO ()
repl env = runInputT settings (withInterrupt (loop env Decode)) repl env = runInputT defaultSettings (loop env)
where where
settings :: Settings IO loop :: Env -> InputT IO ()
settings = Settings loop env = do
{ complete = completeWord Nothing " \t" completeCommands
, historyFile = Just "~/.local/state/tricu/history"
, autoAddHistory = True
}
completeCommands :: String -> IO [Completion]
completeCommands str = return $ map simpleCompletion $
filter (str `isPrefixOf`) commands
where
commands = [ "!exit"
, "!output"
, "!definitions"
, "!import"
, "!clear"
, "!save"
, "!reset"
, "!version"
]
loop :: Env -> EvaluatedForm -> InputT IO ()
loop env form = handle (interruptHandler env form) $ do
minput <- getInputLine "tricu < " minput <- getInputLine "tricu < "
case minput of if
Nothing -> outputStrLn "Exiting tricu" | Nothing <- minput -> outputStrLn "Exiting tricu"
Just s | Just s <- minput, strip s == "!exit" -> outputStrLn "Exiting tricu"
| strip s == "" -> loop env form | Just s <- minput, strip s == "" -> do
| strip s == "!exit" -> outputStrLn "Exiting tricu" outputStrLn ""
| strip s == "!clear" -> do loop env
liftIO $ putStr "\ESC[2J\ESC[H" | Just s <- minput, strip s == "!load" -> do
loop env form path <- getInputLine "File path to load < "
| strip s == "!reset" -> do if
outputStrLn "Environment reset to initial state" | Nothing <- path -> do
loop Map.empty form outputStrLn "No input received; stopping import."
| strip s == "!version" -> do loop env
outputStrLn $ "tricu version " ++ showVersion version | Just p <- path -> do
loop env form loadedEnv <- liftIO $ evaluateFileWithContext env (strip p) `catch` \e -> errorHandler env e
| "!save" `isPrefixOf` strip s -> handleSave env form loop $ Map.delete "__result" (Map.union loadedEnv env)
| strip s == "!output" -> handleOutput env form | Just s <- minput -> do
| strip s == "!definitions" -> do if
let defs = Map.keys $ Map.delete "!result" env | take 2 s == "--" -> loop env
if null defs | otherwise -> do
then outputStrLn "No definitions discovered." newEnv <- liftIO $ processInput env s `catch` errorHandler env
else do loop newEnv
outputStrLn "Available definitions:"
mapM_ outputStrLn defs
loop env form
| "!import" `isPrefixOf` strip s -> handleImport env form
| take 2 s == "--" -> loop env form
| otherwise -> do
newEnv <- liftIO $ processInput env s form `catch` errorHandler env
loop newEnv form
handleOutput :: Env -> EvaluatedForm -> InputT IO () processInput :: Env -> String -> IO Env
handleOutput env currentForm = do processInput env input = do
let formats = [Decode, TreeCalculus, FSL, AST, Ternary, Ascii]
outputStrLn "Available output formats:"
mapM_ (\(i, f) -> outputStrLn $ show i ++ ". " ++ show f)
(zip [1..] formats)
result <- runMaybeT $ do
input <- MaybeT $ getInputLine "Select output format (1-6) < "
case reads input of
[(n, "")] | n >= 1 && n <= 6 ->
return $ formats !! (n-1)
_ -> MaybeT $ return Nothing
case result of
Nothing -> do
outputStrLn "Invalid selection. Keeping current output format."
loop env currentForm
Just newForm -> do
outputStrLn $ "Output format changed to: " ++ show newForm
loop env newForm
handleImport :: Env -> EvaluatedForm -> InputT IO ()
handleImport env form = do
res <- runMaybeT $ do
let fset = setComplete completeFilename defaultSettings
path <- MaybeT $ runInputT fset $
getInputLineWithInitial "File path to load < " ("", "")
text <- MaybeT $ liftIO $ handle (\e -> do
putStrLn $ "Error reading file: " ++ displayException (e :: IOException)
return Nothing
) $ Just <$> readFile (strip path)
case parseProgram (lexTricu text) of
Left err -> do
lift $ outputStrLn $ "Parse error: " ++ handleParseError err
MaybeT $ return Nothing
Right ast -> do
ns <- MaybeT $ runInputT defaultSettings $
getInputLineWithInitial "Namespace (or !Local for no namespace) < " ("", "")
let name = strip ns
if (name /= "!Local" && (null name || not (isUpper (head name)))) then do
lift $ outputStrLn "Namespace must start with an uppercase letter"
MaybeT $ return Nothing
else do
prog <- liftIO $ preprocessFile (strip path)
let code = case name of
"!Local" -> prog
_ -> nsDefinitions name prog
env' = evalTricu env code
return env'
case res of
Nothing -> do
outputStrLn "Import cancelled"
loop env form
Just env' ->
loop (Map.delete "!result" env') form
interruptHandler :: Env -> EvaluatedForm -> Interrupt -> InputT IO ()
interruptHandler env form _ = do
outputStrLn "Interrupted with CTRL+C\n\
\You can use the !exit command or CTRL+D to exit"
loop env form
processInput :: Env -> String -> EvaluatedForm -> IO Env
processInput env input form = do
let asts = parseTricu input let asts = parseTricu input
newEnv = evalTricu env asts newEnv = evalTricu env asts
case Map.lookup "!result" newEnv of if
Just r -> do | Just r <- Map.lookup "__result" newEnv -> do
putStrLn $ "tricu > " ++ formatResult form r putStrLn $ "tricu > " ++ decodeResult r
Nothing -> pure () | otherwise -> return ()
return newEnv return newEnv
errorHandler :: Env -> SomeException -> IO (Env) errorHandler :: Env -> SomeException -> IO (Env)
errorHandler env e = do errorHandler env e = do
putStrLn $ "Error: " ++ show e putStrLn $ "Error: " ++ show e
return env return env
strip :: String -> String strip :: String -> String
strip = dropWhileEnd isSpace . dropWhile isSpace strip = dropWhileEnd isSpace . dropWhile isSpace
handleSave :: Env -> EvaluatedForm -> InputT IO () decodeResult :: T -> String
handleSave env form = do decodeResult tc
let fset = setComplete completeFilename defaultSettings | Right num <- toNumber tc = show num
path <- runInputT fset $ | Right str <- toString tc = "\"" ++ str ++ "\""
getInputLineWithInitial "File to save < " ("", "") | Right list <- toList tc = "[" ++ intercalate ", " (map decodeResult list) ++ "]"
| otherwise = formatResult TreeCalculus tc
case path of
Nothing -> do
outputStrLn "Save cancelled"
loop env form
Just p -> do
let definitions = Map.toList $ Map.delete "!result" env
filepath = strip p
outputStrLn "Starting save..."
liftIO $ writeFile filepath ""
outputStrLn "File created..."
forM_ definitions $ \(name, value) -> do
let content = name ++ " = " ++ formatResult TreeCalculus value ++ "\n"
outputStrLn $ "Writing definition: " ++ name ++ " with length " ++ show (length content)
liftIO $ appendFile filepath content
outputStrLn $ "Saved " ++ show (length definitions) ++ " definitions to " ++ p
loop env form

View File

@ -1,5 +1,6 @@
module Research where module Research where
import Control.Monad.State
import Data.List (intercalate) import Data.List (intercalate)
import Data.Map (Map) import Data.Map (Map)
import Data.Text (Text, replace) import Data.Text (Text, replace)
@ -18,59 +19,47 @@ data TricuAST
| SInt Int | SInt Int
| SStr String | SStr String
| SList [TricuAST] | SList [TricuAST]
| SDef String [String] TricuAST | SFunc String [String] TricuAST
| SApp TricuAST TricuAST | SApp TricuAST TricuAST
| TLeaf | TLeaf
| TStem TricuAST | TStem TricuAST
| TFork TricuAST TricuAST | TFork TricuAST TricuAST
| SLambda [String] TricuAST | SLambda [String] TricuAST
| SEmpty | SEmpty
| SImport String String
deriving (Show, Eq, Ord) deriving (Show, Eq, Ord)
-- Lexer Tokens -- Lexer Tokens
data LToken data LToken
= LKeywordT = LKeywordT
| LIdentifier String | LIdentifier String
| LNamespace String
| LIntegerLiteral Int | LIntegerLiteral Int
| LStringLiteral String | LStringLiteral String
| LAssign | LAssign
| LColon | LColon
| LDot | LBackslash
| LOpenParen | LOpenParen
| LCloseParen | LCloseParen
| LOpenBracket | LOpenBracket
| LCloseBracket | LCloseBracket
| LNewline | LNewline
| LImport String String
deriving (Show, Eq, Ord) deriving (Show, Eq, Ord)
-- Output formats -- Output formats
data EvaluatedForm = TreeCalculus | FSL | AST | Ternary | Ascii | Decode data EvaluatedForm = TreeCalculus | FSL | AST | Ternary | Ascii
deriving (Show, Data, Typeable) deriving (Show, Data, Typeable)
-- Environment containing previously evaluated TC terms -- Environment containing previously evaluated TC terms
type Env = Map.Map String T type Env = Map.Map String T
-- Tree Calculus Reduction Rules -- Tree Calculus Reduction
{-
The t operator is left associative.
1. t t a b -> a
2. t (t a) b c -> a c (b c)
3a. t (t a b) c t -> a
3b. t (t a b) c (t u) -> b u
3c. t (t a b) c (t u v) -> c u v
-}
apply :: T -> T -> T apply :: T -> T -> T
apply (Fork Leaf a) _ = a apply Leaf b = Stem b
apply (Fork (Stem a) b) c = apply (apply a c) (apply b c) apply (Stem a) b = Fork a b
apply (Fork (Fork a b) c) Leaf = a apply (Fork Leaf a) _ = a
apply (Fork (Fork a b) c) (Stem u) = apply b u apply (Fork (Stem a1) a2) b = apply (apply a1 b) (apply a2 b)
apply (Fork (Fork a b) c) (Fork u v) = apply (apply c u) v apply (Fork (Fork a1 a2) a3) Leaf = a1
-- Left associative `t` apply (Fork (Fork a1 a2) a3) (Stem u) = apply a2 u
apply Leaf b = Stem b apply (Fork (Fork a1 a2) a3) (Fork u v) = apply (apply a3 u) v
apply (Stem a) b = Fork a b
-- Booleans -- Booleans
_false :: T _false :: T
@ -84,7 +73,7 @@ _not = Fork (Fork _true (Fork Leaf _false)) Leaf
-- Marshalling -- Marshalling
ofString :: String -> T ofString :: String -> T
ofString str = ofList $ map (ofNumber . fromEnum) str ofString str = ofList (map ofNumber (map fromEnum str))
ofNumber :: Int -> T ofNumber :: Int -> T
ofNumber 0 = Leaf ofNumber 0 = Leaf
@ -94,7 +83,8 @@ ofNumber n =
(ofNumber (n `div` 2)) (ofNumber (n `div` 2))
ofList :: [T] -> T ofList :: [T] -> T
ofList = foldr Fork Leaf ofList [] = Leaf
ofList (x:xs) = Fork x (ofList xs)
toNumber :: T -> Either String Int toNumber :: T -> Either String Int
toNumber Leaf = Right 0 toNumber Leaf = Right 0
@ -125,14 +115,13 @@ formatResult FSL = show
formatResult AST = show . toAST formatResult AST = show . toAST
formatResult Ternary = toTernaryString formatResult Ternary = toTernaryString
formatResult Ascii = toAscii formatResult Ascii = toAscii
formatResult Decode = decodeResult
toSimpleT :: String -> String toSimpleT :: String -> String
toSimpleT s = T.unpack toSimpleT s = T.unpack
$ replace "Fork" "t" $ replace "Fork" "t"
$ replace "Stem" "t" $ replace "Stem" "t"
$ replace "Leaf" "t" $ replace "Leaf" "t"
$ T.pack s $ (T.pack s)
toTernaryString :: T -> String toTernaryString :: T -> String
toTernaryString Leaf = "0" toTernaryString Leaf = "0"
@ -158,19 +147,4 @@ toAscii tree = go tree "" True
++ go left (prefix ++ (if isLast then " " else "| ")) False ++ go left (prefix ++ (if isLast then " " else "| ")) False
++ go right (prefix ++ (if isLast then " " else "| ")) True ++ go right (prefix ++ (if isLast then " " else "| ")) True
decodeResult :: T -> String -- Utility
decodeResult Leaf = "t"
decodeResult tc =
case (toString tc, toList tc, toNumber tc) of
(Right s, _, _) | all isCommonChar s -> "\"" ++ s ++ "\""
(_, _, Right n) -> show n
(_, Right xs@(_:_), _) -> "[" ++ intercalate ", " (map decodeResult xs) ++ "]"
(_, Right [], _) -> "[]"
_ -> formatResult TreeCalculus tc
where
isCommonChar c =
let n = fromEnum c
in (n >= 32 && n <= 126)
|| n == 9
|| n == 10
|| n == 13

View File

@ -7,13 +7,12 @@ import Parser
import REPL import REPL
import Research import Research
import Control.Exception (evaluate, try, SomeException) import Control.Exception (evaluate, try, SomeException)
import Control.Monad.IO.Class (liftIO) import Control.Monad.IO.Class (liftIO)
import Data.List (isInfixOf)
import Test.Tasty import Test.Tasty
import Test.Tasty.HUnit import Test.Tasty.HUnit
import Test.Tasty.QuickCheck import Test.Tasty.QuickCheck
import Text.Megaparsec (runParser) import Text.Megaparsec (runParser)
import qualified Data.Map as Map import qualified Data.Map as Map
import qualified Data.Set as Set import qualified Data.Set as Set
@ -30,11 +29,9 @@ tests = testGroup "Tricu Tests"
, parser , parser
, simpleEvaluation , simpleEvaluation
, lambdas , lambdas
, providedLibraries , baseLibrary
, fileEval , fileEval
, modules
, demos , demos
, decoding
] ]
lexer :: TestTree lexer :: TestTree
@ -51,22 +48,7 @@ lexer = testGroup "Lexer Tests"
, testCase "Lex escaped characters in strings" $ do , testCase "Lex escaped characters in strings" $ do
let input = "\"hello\\nworld\"" let input = "\"hello\\nworld\""
expect = Right [LStringLiteral "hello\nworld"] expect = Right [LStringLiteral "hello\\nworld"]
runParser tricuLexer "" input @?= expect
, testCase "Lex multiple escaped characters in strings" $ do
let input = "\"tab:\\t newline:\\n quote:\\\" backslash:\\\\\""
expect = Right [LStringLiteral "tab:\t newline:\n quote:\" backslash:\\"]
runParser tricuLexer "" input @?= expect
, testCase "Lex escaped characters in string literals" $ do
let input = "x = \"line1\\nline2\\tindented\""
expect = Right [LIdentifier "x", LAssign, LStringLiteral "line1\nline2\tindented"]
runParser tricuLexer "" input @?= expect
, testCase "Lex empty string with escape sequence" $ do
let input = "\"\\\"\""
expect = Right [LStringLiteral "\""]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex mixed literals" $ do , testCase "Lex mixed literals" $ do
@ -88,9 +70,9 @@ lexer = testGroup "Lexer Tests"
Right i -> i @?= expect Right i -> i @?= expect
, testCase "Error when using invalid characters in identifiers" $ do , testCase "Error when using invalid characters in identifiers" $ do
case (runParser tricuLexer "" "!result = 5") of case (runParser tricuLexer "" "__result = 5") of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of !result" Right _ -> assertFailure "Expected failure when trying to assign the value of __result"
] ]
parser :: TestTree parser :: TestTree
@ -102,8 +84,8 @@ parser = testGroup "Parser Tests"
Right _ -> assertFailure "Expected failure when trying to assign the value of T" Right _ -> assertFailure "Expected failure when trying to assign the value of T"
, testCase "Parse function definitions" $ do , testCase "Parse function definitions" $ do
let input = "x = (a b c : a)" let input = "x = (\\a b c : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a")))) expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested Tree Calculus terms" $ do , testCase "Parse nested Tree Calculus terms" $ do
@ -122,8 +104,8 @@ parser = testGroup "Parser Tests"
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse function with applications" $ do , testCase "Parse function with applications" $ do
let input = "f = (x : t x)" let input = "f = (\\x : t x)"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x"))) expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested lists" $ do , testCase "Parse nested lists" $ do
@ -164,23 +146,23 @@ parser = testGroup "Parser Tests"
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested parentheses in function body" $ do , testCase "Parse nested parentheses in function body" $ do
let input = "f = (x : t (t (t t)))" let input = "f = (\\x : t (t (t t)))"
expect = SDef "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf)))) expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse lambda abstractions" $ do , testCase "Parse lambda abstractions" $ do
let input = "(a : a)" let input = "(\\a : a)"
expect = (SLambda ["a"] (SVar "a")) expect = (SLambda ["a"] (SVar "a"))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse multiple arguments to lambda abstractions" $ do , testCase "Parse multiple arguments to lambda abstractions" $ do
let input = "x = (a b : a)" let input = "x = (\\a b : a)"
expect = SDef "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a"))) expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Grouping T terms with parentheses in function application" $ do , testCase "Grouping T terms with parentheses in function application" $ do
let input = "x = (a : a)\nx (t)" let input = "x = (\\a : a)\nx (t)"
expect = [SDef "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf] expect = [SFunc "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
parseTricu input @?= expect parseTricu input @?= expect
, testCase "Comments 1" $ do , testCase "Comments 1" $ do
@ -274,7 +256,7 @@ simpleEvaluation = testGroup "Evaluation Tests"
, testCase "Apply identity to Boolean Not" $ do , testCase "Apply identity to Boolean Not" $ do
let not = "(t (t (t t) (t t t)) t)" let not = "(t (t (t t) (t t t)) t)"
let input = "x = (a : a)\nx " ++ not let input = "x = (\\a : a)\nx " ++ not
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
] ]
@ -282,182 +264,214 @@ simpleEvaluation = testGroup "Evaluation Tests"
lambdas :: TestTree lambdas :: TestTree
lambdas = testGroup "Lambda Evaluation Tests" lambdas = testGroup "Lambda Evaluation Tests"
[ testCase "Lambda Identity Function" $ do [ testCase "Lambda Identity Function" $ do
let input = "id = (x : x)\nid t" let input = "id = (\\x : x)\nid t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda Constant Function (K combinator)" $ do , testCase "Lambda Constant Function (K combinator)" $ do
let input = "k = (x y : x)\nk t (t t)" let input = "k = (\\x y : x)\nk t (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda Application with Variable" $ do , testCase "Lambda Application with Variable" $ do
let input = "id = (x : x)\nval = t t\nid val" let input = "id = (\\x : x)\nval = t t\nid val"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda Application with Multiple Arguments" $ do , testCase "Lambda Application with Multiple Arguments" $ do
let input = "apply = (f x y : f x y)\nk = (a b : a)\napply k t (t t)" let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Nested Lambda Application" $ do , testCase "Nested Lambda Application" $ do
let input = "apply = (f x y : f x y)\nid = (x : x)\napply (f x : f x) id t" let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with a complex body" $ do , testCase "Lambda with a complex body" $ do
let input = "f = (x : t (t x))\nf t" let input = "f = (\\x : t (t x))\nf t"
runTricu input @?= "Stem (Stem Leaf)" runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda returning a function" $ do , testCase "Lambda returning a function" $ do
let input = "f = (x : (y : x))\ng = f t\ng (t t)" let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with Shadowing" $ do , testCase "Lambda with Shadowing" $ do
let input = "f = (x : (x : x))\nf t (t t)" let input = "f = (\\x : (\\x : x))\nf t (t t)"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda returning another lambda" $ do , testCase "Lambda returning another lambda" $ do
let input = "k = (x : (y : x))\nk_app = k t\nk_app (t t)" let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with free variables" $ do , testCase "Lambda with free variables" $ do
let input = "y = t t\nf = (x : y)\nf t" let input = "y = t t\nf = (\\x : y)\nf t"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "SKI Composition" $ do , testCase "SKI Composition" $ do
let input = "s = (x y z : x z (y z))\nk = (x y : x)\ni = (x : x)\ncomp = s k i\ncomp t (t t)" let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)"
runTricu input @?= "Stem (Stem Leaf)" runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda with multiple parameters and application" $ do , testCase "Lambda with multiple parameters and application" $ do
let input = "f = (a b c : t a b c)\nf t (t t) (t t t)" let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda with nested application in the body" $ do , testCase "Lambda with nested application in the body" $ do
let input = "f = (x : t (t (t x)))\nf t" let input = "f = (\\x : t (t (t x)))\nf t"
runTricu input @?= "Stem (Stem (Stem Leaf))" runTricu input @?= "Stem (Stem (Stem Leaf))"
, testCase "Lambda returning a function and applying it" $ do , testCase "Lambda returning a function and applying it" $ do
let input = "f = (x : (y : t x y))\ng = f t\ng (t t)" let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)"
runTricu input @?= "Fork Leaf (Stem Leaf)" runTricu input @?= "Fork Leaf (Stem Leaf)"
, testCase "Lambda applying a variable" $ do , testCase "Lambda applying a variable" $ do
let input = "id = (x : x)\na = t t\nid a" let input = "id = (\\x : x)\na = t t\nid a"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Nested lambda abstractions in the same expression" $ do , testCase "Nested lambda abstractions in the same expression" $ do
let input = "f = (x : (y : x y))\ng = (z : z)\nf g t" let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda applied to string literal" $ do , testCase "Lambda with a string literal" $ do
let input = "f = (x : x)\nf \"hello\"" let input = "f = (\\x : x)\nf \"hello\""
runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))" runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
, testCase "Lambda applied to integer literal" $ do , testCase "Lambda with an integer literal" $ do
let input = "f = (x : x)\nf 42" let input = "f = (\\x : x)\nf 42"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))" runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
, testCase "Lambda applied to list literal" $ do , testCase "Lambda with a list literal" $ do
let input = "f = (x : x)\nf [t (t t)]" let input = "f = (\\x : x)\nf [t (t t)]"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)" runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
, testCase "Lambda containing list literal" $ do
let input = "(a : [(a)]) 1"
runTricu input @?= "Fork (Fork (Stem Leaf) Leaf) Leaf"
] ]
providedLibraries :: TestTree baseLibrary :: TestTree
providedLibraries = testGroup "Library Tests" baseLibrary = testGroup "Library Tests"
[ testCase "Triage test Leaf" $ do [ testCase "K combinator 1" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "k (t) (t t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "K combinator 2" $ do
library <- evaluateFile "./lib/base.tri"
let input = "k (t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "K combinator 3" $ do
library <- evaluateFile "./lib/base.tri"
let input = "k (t t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf
, testCase "S combinator" $ do
library <- evaluateFile "./lib/base.tri"
let input = "s (t) (t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf (Stem Leaf)
, testCase "SKK == I (fully expanded)" $ do
library <- evaluateFile "./lib/base.tri"
let input = "s k k"
env = evalTricu library (parseTricu input)
result env @?= Fork (Stem (Stem Leaf)) (Stem Leaf)
, testCase "I combinator" $ do
library <- evaluateFile "./lib/base.tri"
let input = "i not?"
env = evalTricu library (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) (Fork Leaf (Fork Leaf Leaf))
, testCase "Triage test Leaf" $ do
library <- evaluateFile "./lib/base.tri"
let input = "test t" let input = "test t"
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Leaf\"" env @?= "\"Leaf\""
, testCase "Triage test (Stem Leaf)" $ do , testCase "Triage test (Stem Leaf)" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "test (t t)" let input = "test (t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Stem\"" env @?= "\"Stem\""
, testCase "Triage test (Fork Leaf Leaf)" $ do , testCase "Triage test (Fork Leaf Leaf)" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "test (t t t)" let input = "test (t t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Fork\"" env @?= "\"Fork\""
, testCase "Boolean NOT: true" $ do , testCase "Boolean NOT: true" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "not? true" let input = "not? true"
env = result $ evalTricu library (parseTricu input) env = result $ evalTricu library (parseTricu input)
env @?= Leaf env @?= Leaf
, testCase "Boolean NOT: false" $ do , testCase "Boolean NOT: false" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "not? false" let input = "not? false"
env = result $ evalTricu library (parseTricu input) env = result $ evalTricu library (parseTricu input)
env @?= Stem Leaf env @?= Stem Leaf
, testCase "Boolean AND TF" $ do , testCase "Boolean AND TF" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "and? (t t) (t)" let input = "and? (t t) (t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "Boolean AND FT" $ do , testCase "Boolean AND FT" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "and? (t) (t t)" let input = "and? (t) (t t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "Boolean AND FF" $ do , testCase "Boolean AND FF" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "and? (t) (t)" let input = "and? (t) (t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "Boolean AND TT" $ do , testCase "Boolean AND TT" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "and? (t t) (t t)" let input = "and? (t t) (t t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "List head" $ do , testCase "List head" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "head [(t) (t t) (t t t)]" let input = "head [(t) (t t) (t t t)]"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "List tail" $ do , testCase "List tail" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "head (tail (tail [(t) (t t) (t t t)]))" let input = "head (tail (tail [(t) (t t) (t t t)]))"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf result env @?= Fork Leaf Leaf
, testCase "List map" $ do , testCase "List map" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "head (tail (map (a : (t t t)) [(t) (t) (t)]))" let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf result env @?= Fork Leaf Leaf
, testCase "Empty list check" $ do , testCase "Empty list check" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "emptyList? []" let input = "emptyList? []"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "Non-empty list check" $ do , testCase "Non-empty list check" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "not? (emptyList? [(1) (2) (3)])" let input = "not? (emptyList? [(1) (2) (3)])"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "Concatenate strings" $ do , testCase "Concatenate strings" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "append \"Hello, \" \"world!\"" let input = "lconcat \"Hello, \" \"world!\""
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Hello, world!\"" env @?= "\"Hello, world!\""
, testCase "Verifying Equality" $ do , testCase "Verifying Equality" $ do
library <- evaluateFile "./lib/list.tri" library <- evaluateFile "./lib/base.tri"
let input = "equal? (t t t) (t t t)" let input = "equal? (t t t) (t t t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
@ -474,99 +488,31 @@ fileEval = testGroup "File evaluation tests"
res @?= Fork (Stem Leaf) Leaf res @?= Fork (Stem Leaf) Leaf
, testCase "Mapping and Equality" $ do , testCase "Mapping and Equality" $ do
library <- liftIO $ evaluateFile "./lib/list.tri" res <- liftIO $ evaluateFileResult "./test/map.tri"
fEnv <- liftIO $ evaluateFileWithContext library "./test/map.tri" res @?= Stem Leaf
(mainResult fEnv) @?= Stem Leaf
, testCase "Eval and decoding string" $ do , testCase "Eval and decoding string" $ do
library <- liftIO $ evaluateFile "./lib/list.tri" library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./test/string.tri" res <- liftIO $ evaluateFileWithContext library "./test/string.tri"
decodeResult (result res) @?= "\"String test!\"" decodeResult (result res) @?= "\"String test!\""
] ]
modules :: TestTree
modules = testGroup "Test modules"
[ testCase "Detect cyclic dependencies" $ do
result <- try (liftIO $ evaluateFileResult "./test/cycle-1.tri") :: IO (Either SomeException T)
case result of
Left e -> do
let errorMsg = show e
if "Encountered cyclic import" `isInfixOf` errorMsg
then return ()
else assertFailure $ "Unexpected error: " ++ errorMsg
Right _ -> assertFailure "Expected cyclic dependencies"
, testCase "Module imports and namespacing" $ do
res <- liftIO $ evaluateFileResult "./test/namespace-A.tri"
res @?= Leaf
, testCase "Multiple imports" $ do
res <- liftIO $ evaluateFileResult "./test/vars-A.tri"
res @?= Leaf
, testCase "Error on unresolved variable" $ do
result <- try (liftIO $ evaluateFileResult "./test/unresolved-A.tri") :: IO (Either SomeException T)
case result of
Left e -> do
let errorMsg = show e
if "undefinedVar" `isInfixOf` errorMsg
then return ()
else assertFailure $ "Unexpected error: " ++ errorMsg
Right _ -> assertFailure "Expected unresolved variable error"
, testCase "Multi-level imports" $ do
res <- liftIO $ evaluateFileResult "./test/multi-level-A.tri"
res @?= Leaf
, testCase "Lambda expression namespaces" $ do
res <- liftIO $ evaluateFileResult "./test/lambda-A.tri"
res @?= Leaf
, testCase "Local namespace import chain" $ do
res <- liftIO $ evaluateFileResult "./test/local-ns/1.tri"
res @?= Fork (Stem Leaf) (Fork (Stem Leaf) Leaf)
]
-- All of our demo tests are also module tests
demos :: TestTree demos :: TestTree
demos = testGroup "Test provided demo functionality" demos = testGroup "Test provided demo functionality"
[ testCase "Structural equality demo" $ do [ testCase "Structural equality demo" $ do
res <- liftIO $ evaluateFileResult "./demos/equality.tri" library <- liftIO $ evaluateFile "./lib/base.tri"
decodeResult res @?= "t t" res <- liftIO $ evaluateFileWithContext library "./demos/equality.tri"
decodeResult (result res) @?= "t t"
, testCase "Convert values back to source code demo" $ do , testCase "Convert values back to source code demo" $ do
res <- liftIO $ evaluateFileResult "./demos/toSource.tri" library <- liftIO $ evaluateFile "./lib/base.tri"
decodeResult res @?= "\"(t (t (t t) (t t t)) (t t (t t t)))\"" res <- liftIO $ evaluateFileWithContext library "./demos/toSource.tri"
decodeResult (result res) @?= "\"(t (t (t t) (t t t)) (t t (t t t)))\""
, testCase "Determining the size of functions" $ do , testCase "Determining the size of functions" $ do
res <- liftIO $ evaluateFileResult "./demos/size.tri" library <- liftIO $ evaluateFile "./lib/base.tri"
decodeResult res @?= "454" res <- liftIO $ evaluateFileWithContext library "./demos/size.tri"
decodeResult (result res) @?= "454"
, testCase "Level Order Traversal demo" $ do , testCase "Level Order Traversal demo" $ do
res <- liftIO $ evaluateFileResult "./demos/levelOrderTraversal.tri" library <- liftIO $ evaluateFile "./lib/base.tri"
decodeResult res @?= "\"\n1 \n2 3 \n4 5 6 7 \n8 11 10 9 12 \"" res <- liftIO $ evaluateFileWithContext library "./demos/levelOrderTraversal.tri"
] decodeResult (result res) @?= "\"\n1 \n2 3 \n4 5 6 7 \n8 11 10 9 12 \""
decoding :: TestTree
decoding = testGroup "Decoding Tests"
[ testCase "Decode Leaf" $ do
decodeResult Leaf @?= "t"
, testCase "Decode list of non-ASCII numbers" $ do
let input = ofList [ofNumber 1, ofNumber 14, ofNumber 6]
decodeResult input @?= "[1, 14, 6]"
, testCase "Decode list of ASCII numbers as a string" $ do
let input = ofList [ofNumber 97, ofNumber 98, ofNumber 99]
decodeResult input @?= "\"abc\""
, testCase "Decode small number" $ do
decodeResult (ofNumber 42) @?= "42"
, testCase "Decode large number" $ do
decodeResult (ofNumber 9999) @?= "9999"
, testCase "Decode string in list" $ do
let input = ofList [ofString "hello", ofString "world"]
decodeResult input @?= "[\"hello\", \"world\"]"
, testCase "Decode mixed list with strings" $ do
let input = ofList [ofString "hello", ofNumber 42, ofString "world"]
decodeResult input @?= "[\"hello\", 42, \"world\"]"
, testCase "Decode nested lists with strings" $ do
let input = ofList [ofList [ofString "nested"], ofString "string"]
decodeResult input @?= "[[\"nested\"], \"string\"]"
] ]

1
test/ascii.tri Normal file
View File

@ -0,0 +1 @@
t (t (t (t (t t) (t t t)) t) t t) t

1
test/assignment.tri Normal file
View File

@ -0,0 +1 @@
x = t (t t) t

View File

@ -1,9 +1,9 @@
-- This is a tricu comment! -- This is a tricu comment!
-- t (t t) (t (t t t)) -- t (t t) (t (t t t))
-- t (t t t) (t t) -- t (t t t) (t t)
-- x = (a : a) -- x = (\a : a)
main = t (t t) t -- Fork (Stem Leaf) Leaf t (t t) t -- Fork (Stem Leaf) Leaf
-- t t -- t t
-- x -- x
-- x = (a : a) -- x = (\a : a)
-- t -- t

View File

@ -1,4 +0,0 @@
!import "cycle-2.tri" Cycle2
cycle1 = t Cycle2.cycle2

View File

@ -1,4 +0,0 @@
!import "cycle-1.tri" Cycle1
cycle2 = t Cycle1.cycle1

View File

@ -1 +1 @@
main = t t t t t t

View File

@ -1 +0,0 @@
main = (x : x) t

View File

@ -1,4 +0,0 @@
!import "2.tri" Two
main = Two.x

View File

@ -1,2 +0,0 @@
!import "3.tri" !Local

View File

@ -1 +0,0 @@
x = 3

View File

@ -1,2 +1,24 @@
x = map (i : append "Successfully concatenated " i) [("two strings!")] false = t
main = equal? x [("Successfully concatenated two strings!")] true = t t
_ = t
k = t t
i = t (t k) t
s = t (t (k t)) t
m = s i i
b = s (k s) k
c = s (s (k s) (s (k k) s)) (k k)
iC = (\a b c : s a (k c) b)
yi = (\i : b m (c b (i m)))
y = yi iC
triage = (\a b c : t (t a b) c)
pair = t
matchList = (\oe oc : triage oe _ oc)
lconcat = y (\self : matchList (\k : k) (\h r k : pair h (self r k)))
hmap = y (\self : matchList (\f : t) (\hd tl f : pair (f hd) (self tl f)))
map = (\f l : hmap l f)
lAnd = triage (\x : false) (\_ x : x) (\_ _ x : x)
lOr = triage (\x : x) (\_ _ : true) (\_ _ x : true)
equal = y (\self : triage (triage true (\z : false) (\y z : false)) (\ax : triage false (self ax) (\y z : false)) (\ax ay : triage false (\z : false) (\bx by : lAnd (self ax bx) (self ay by))))
x = map (\i : lconcat "Successfully concatenated " i) [("two strings!")]
equal x [("Successfully concatenated two strings!")]

View File

@ -1,2 +0,0 @@
!import "multi-level-B.tri" B
main = B.main

View File

@ -1,2 +0,0 @@
!import "multi-level-C.tri" C
main = C.val

View File

@ -1 +0,0 @@
val = t

View File

@ -1,7 +0,0 @@
!import "lib/base.tri"
!import "test/named-imports/2.tri"
!import "test/named-imports/3.tri" ThreeRenamed
main = equal? (equal? Two.x 2) (equal? ThreeRenamed.x 3)

View File

@ -1,2 +0,0 @@
x = 2

View File

@ -1,2 +0,0 @@
x = 3

View File

@ -1,2 +0,0 @@
!import "namespace-B.tri" B
main = B.x

View File

@ -1 +0,0 @@
x = t

View File

@ -1,21 +0,0 @@
compose = f g x : f (g x)
succ = y (self :
triage
1
t
(triage
(t (t t))
(_ tail : t t (self tail))
t))
size = (x :
(y (self x :
compose succ
(triage
(x : x)
self
(x y : compose (self x) (self y))
x)) x 0))
size size

View File

@ -1 +1 @@
head (map (i : append "String " i) [("test!")]) head (map (\i : lconcat "String " i) [("test!")])

View File

@ -1 +0,0 @@
main = undefinedVar

View File

@ -1,6 +0,0 @@
!import "vars-B.tri" B
!import "vars-C.tri" C
main = B.y (C.z)

View File

@ -1 +0,0 @@
y = x : x

View File

@ -1 +0,0 @@
z = t

View File

@ -1,7 +1,7 @@
cabal-version: 1.12 cabal-version: 1.12
name: tricu name: tricu
version: 0.18.1 version: 0.9.0
description: A micro-language for exploring Tree Calculus description: A micro-language for exploring Tree Calculus
author: James Eversole author: James Eversole
maintainer: james@eversole.co maintainer: james@eversole.co
@ -26,13 +26,10 @@ executable tricu
base >=4.7 base >=4.7
, cmdargs , cmdargs
, containers , containers
, exceptions
, filepath
, haskeline , haskeline
, megaparsec , megaparsec
, mtl , mtl
, text , text
, transformers
other-modules: other-modules:
Eval Eval
FileEval FileEval
@ -55,8 +52,6 @@ test-suite tricu-tests
base base
, cmdargs , cmdargs
, containers , containers
, exceptions
, filepath
, haskeline , haskeline
, megaparsec , megaparsec
, mtl , mtl
@ -64,7 +59,6 @@ test-suite tricu-tests
, tasty-hunit , tasty-hunit
, tasty-quickcheck , tasty-quickcheck
, text , text
, transformers
default-language: Haskell2010 default-language: Haskell2010
other-modules: other-modules:
Eval Eval