3 Commits

Author SHA1 Message Date
2bd388c871 Eval optimization! Tests for demos
All checks were successful
Test, Build, and Release / test (push) Successful in 1m30s
Test, Build, and Release / build (push) Successful in 1m26s
2025-01-25 09:18:13 -06:00
1f5a910fb2 Immutable definitions and documentation updates
All checks were successful
Test, Build, and Release / test (push) Successful in 1m22s
Test, Build, and Release / build (push) Successful in 1m23s
2025-01-24 16:14:33 -06:00
8b043911ca Add size demo 2025-01-23 18:57:59 -06:00
8 changed files with 222 additions and 70 deletions

View File

@ -2,19 +2,20 @@
## Introduction ## Introduction
tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. [I'm](https://eversole.co) developing tricu to further research the possibilities offered by the various forms of [Tree Calculi](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf). tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. It is fundamentally based on the application of [Tree Calculus](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf) terms, but minimal syntax sugar is included to provide a useful programming tool.
tricu offers minimal syntax sugar yet manages to provide a complete, intuitive, and familiar programming environment. There is great power in simplicity. tricu offers: tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`.
1. `t` operator behaving by the rules of Tree Calculus ## Features
1. Function definitions/assignments
1. Lambda abstractions eliminated to Tree Calculus forms
1. List, Number, and String literals
1. Parentheses for grouping function application
These features move us cleanly out of the [turing tarpit](https://en.wikipedia.org/wiki/Turing_tarpit) territory that you may find yourself in if you try working only with the `t` operator. - Tree Calculus operator: `t`
- Assignments: `x = t t`
tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`. This project was named "sapling" until I discovered the name is already being used for other (completely unrelated) programming language development projects. - Lambda abstraction syntax: `id = (\a : a)`
- List, Number, and String literals: `[(2) ("Hello")]`
- Function application: `not (not false)`
- Higher order/first-class functions: `map (\a : lconcat a "!") [("Hello")]`
- Intensionality blurs the distinction between functions and data (see REPL examples)
- Immutability
## REPL examples ## REPL examples
@ -26,7 +27,7 @@ tricu > "Hello, world!"
tricu < id (head (map (\i : lconcat i " world!") [("Hello, ")])) tricu < id (head (map (\i : lconcat i " world!") [("Hello, ")]))
tricu > "Hello, world!" tricu > "Hello, world!"
tricu < -- Intensionality! We can inspect the structure of a function. tricu < -- Intensionality! We can inspect the structure of a function or data.
tricu < triage = (\a b c : t (t a b) c) tricu < triage = (\a b c : t (t a b) c)
tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork") tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork")
tricu < test (t t) tricu < test (t t)
@ -34,11 +35,16 @@ tricu > "Stem"
tricu < -- We can even convert a term back to source code (/demos/toSource.tri) tricu < -- We can even convert a term back to source code (/demos/toSource.tri)
tricu < toSource not? tricu < toSource not?
tricu > "(t (t (t t) (t t t)) (t t (t t t)))" tricu > "(t (t (t t) (t t t)) (t t (t t t)))"
tricu < -- or calculate its size (/demos/size.tri)
tricu < size not?
tricu > 12
``` ```
## Installation and Use ## Installation and Use
You can easily build and/or run this project using [Nix](https://nixos.org/download/). [Releases are available for Linux.](https://git.eversole.co/James/tricu/releases)
Or you can easily build and/or run this project using [Nix](https://nixos.org/download/).
- Quick Start (REPL): - Quick Start (REPL):
- `nix run git+https://git.eversole.co/James/tricu` - `nix run git+https://git.eversole.co/James/tricu`

View File

@ -1,24 +1,35 @@
false = t -- We represent `false` with a Leaf and `true` with a Stem Leaf
true = t t demo_false = t
demo_true = t t
triage = (\a b c : t (t a b) c) -- Tree Calculus representation of the Boolean `not` function
not_TC? = t (t (t t) (t t t)) (t t (t t t))
matchBool = (\ot of : triage -- /demos/toSource.tri contains an explanation of `triage`
demo_triage = (\a b c : t (t a b) c)
demo_matchBool = (\ot of : demo_triage
of of
(\_ : ot) (\_ : ot)
(\_ _ : ot) (\_ _ : ot)
) )
-- Lambda representation of the Boolean `not` function
not_Lambda? = demo_matchBool demo_false demo_true
not_TC? = t (t (t t) (t t t)) (t t (t t t)) -- Since tricu eliminates Lambda terms to SKI combinators, the tree form of many
not_Lambda? = matchBool false true -- functions defined via Lambda terms are larger than the most efficient TC
-- representation. Between different languages that evaluate to tree calculus
-- terms, the exact implementation of Lambda elimination may differ and lead
-- to different tree representations even if they share extensional behavior.
areEqual? = equal not_TC not_Lambda -- Let's see if these are the same:
lambdaEqualsTC = equal? not_TC? not_Lambda?
true_TC? = not_TC false -- Here are some checks to verify their extensional behavior is the same:
false_TC? = not_TC true true_TC? = not_TC? demo_false
false_TC? = not_TC? demo_true
true_Lambda? = not_Lambda false true_Lambda? = not_Lambda? demo_false
false_Lambda? = not_Lambda true false_Lambda? = not_Lambda? demo_true
areTrueEqual? = equal true_TC true_Lambda bothTrueEqual? = equal? true_TC? true_Lambda?
areFalseEqual? = equal false_TC false_Lambda bothFalseEqual? = equal? false_TC? false_Lambda?

View File

@ -4,7 +4,7 @@
-- NOTICE: This demo relies on tricu base library functions -- NOTICE: This demo relies on tricu base library functions
-- --
-- We model labelled binary trees as sublists where values act as labels. We -- We model labelled binary trees as sublists where values act as labels. We
-- require explicit notation of empty nodes. Empty nodes can be represented -- require explicit not?ation of empty nodes. Empty nodes can be represented
-- with an empty list, `[]`, which is equivalent to a single node `t`. -- with an empty list, `[]`, which is equivalent to a single node `t`.
-- --
-- Example tree inputs: -- Example tree inputs:
@ -19,33 +19,33 @@
label = (\node : head node) label = (\node : head node)
left = (\node : if (emptyList node) left = (\node : if (emptyList? node)
[] []
(if (emptyList (tail node)) (if (emptyList? (tail node))
[] []
(head (tail node)))) (head (tail node))))
right = (\node : if (emptyList node) right = (\node : if (emptyList? node)
[] []
(if (emptyList (tail node)) (if (emptyList? (tail node))
[] []
(if (emptyList (tail (tail node))) (if (emptyList? (tail (tail node)))
[] []
(head (tail (tail node)))))) (head (tail (tail node))))))
processLevel = y (\self queue : if (emptyList queue) processLevel = y (\self queue : if (emptyList? queue)
[] []
(pair (map label queue) (self (filter (pair (map label queue) (self (filter
(\node : not (emptyList node)) (\node : not? (emptyList? node))
(lconcat (map left queue) (map right queue)))))) (lconcat (map left queue) (map right queue))))))
levelOrderTraversal_ = (\a : processLevel (t a t)) levelOrderTraversal_ = (\a : processLevel (t a t))
toLineString = y (\self levels : if (emptyList levels) toLineString = y (\self levels : if (emptyList? levels)
"" ""
(lconcat (lconcat
(lconcat (map (\x : lconcat x " ") (head levels)) "") (lconcat (map (\x : lconcat x " ") (head levels)) "")
(if (emptyList (tail levels)) "" (lconcat (t (t 10 t) t) (self (tail levels)))))) (if (emptyList? (tail levels)) "" (lconcat (t (t 10 t) t) (self (tail levels))))))
levelOrderToString = (\s : toLineString (levelOrderTraversal_ s)) levelOrderToString = (\s : toLineString (levelOrderTraversal_ s))

21
demos/size.tri Normal file
View File

@ -0,0 +1,21 @@
compose = (\f g x : f (g x))
succ = y (\self :
triage
1
t
(triage
(t (t t))
(\_ tail : t t (self tail))
t))
size = (\x :
(y (\self x :
compose succ
(triage
(\x : x)
self
(\x y : compose (self x) (self y))
x)) x 0))
size size

View File

@ -2,13 +2,13 @@
-- even if it's a function. This includes lambdas which are eliminated to -- even if it's a function. This includes lambdas which are eliminated to
-- Tree Calculus (TC) terms during evaluation. -- Tree Calculus (TC) terms during evaluation.
-- Triage takes four arguments: the first three represent behaviors for each -- `triage` takes four arguments: the first three represent behaviors for each
-- structural case in Tree Calculus (Leaf, Stem, and Fork). -- structural case in Tree Calculus (Leaf, Stem, and Fork).
-- The fourth argument is the value whose structure is inspected. By evaluating -- The fourth argument is the value whose structure is inspected. By evaluating
-- the Tree Calculus term, `triage` enables branching logic based on the term's -- the Tree Calculus term, `triage` enables branching logic based on the term's
-- shape, making it possible to perform structure-specific operations such as -- shape, making it possible to perform structure-specific operations such as
-- reconstructing the terms' source code representation. -- reconstructing the terms' source code representation.
triage = (\a b c : t (t a b) c) -- triage = (\leaf stem fork : t (t leaf stem) fork)
-- Base case of a single Leaf -- Base case of a single Leaf
sourceLeaf = t (head "t") sourceLeaf = t (head "t")
@ -34,13 +34,13 @@ sourceFork = (\convert : (\a b rest :
-- Wrapper around triage -- Wrapper around triage
toSource_ = y (\self arg : toSource_ = y (\self arg :
triage triage
sourceLeaf -- Triage `a` case, Leaf sourceLeaf -- `triage` "a" case, Leaf
(sourceStem self) -- Triage `b` case, Stem (sourceStem self) -- `triage` "b" case, Stem
(sourceFork self) -- Triage `c` case, Fork (sourceFork self) -- `triage` "c" case, Fork
arg) -- The term to be inspected arg) -- The term to be inspected
-- toSource takes a single TC term and returns a String -- toSource takes a single TC term and returns a String
toSource = (\v : toSource_ v "") toSource = (\v : toSource_ v "")
exampleOne = toSource true -- OUT: "(t t)" exampleOne = toSource true -- OUT: "(t t)"
exampleTwo = toSource not -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))" exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"

View File

@ -18,7 +18,7 @@ id = (\a : a)
pair = t pair = t
if = (\cond then else : t (t else (t t then)) t cond) if = (\cond then else : t (t else (t t then)) t cond)
triage = (\a b c : t (t a b) c) triage = (\leaf stem fork : t (t leaf stem) fork)
test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork") test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork")
matchBool = (\ot of : triage matchBool = (\ot of : triage

View File

@ -11,15 +11,20 @@ import qualified Data.Set as Set
evalSingle :: Env -> TricuAST -> Env evalSingle :: Env -> TricuAST -> Env
evalSingle env term evalSingle env term
| SFunc name [] body <- term = | SFunc name [] body <- term =
let res = evalAST env body if
in Map.insert "__result" res (Map.insert name res env) | Map.member name env ->
errorWithoutStackTrace $
"Error: Identifier '" ++ name ++ "' is already defined."
| otherwise ->
let res = evalAST env body
in Map.insert "__result" res (Map.insert name res env)
| SApp func arg <- term = | SApp func arg <- term =
let res = apply (evalAST env func) (evalAST env arg) let res = apply (evalAST env func) (evalAST env arg)
in Map.insert "__result" res env in Map.insert "__result" res env
| SVar name <- term = | SVar name <- term =
case Map.lookup name env of case Map.lookup name env of
Just v -> Map.insert "__result" v env Just v -> Map.insert "__result" v env
Nothing -> errorWithoutStackTrace $ "Variable " ++ name ++ " not defined" Nothing -> errorWithoutStackTrace $ "Variable `" ++ name ++ "` not defined"
| otherwise = | otherwise =
Map.insert "__result" (evalAST env term) env Map.insert "__result" (evalAST env term) env
@ -54,11 +59,13 @@ evalAST env term
elimLambda :: TricuAST -> TricuAST elimLambda :: TricuAST -> TricuAST
elimLambda = go elimLambda = go
where where
go (SLambda [v] (SApp f (SVar x)))
| v == x && not (isFree v f) = elimLambda f
go (SLambda (v:vs) body) go (SLambda (v:vs) body)
| null vs = toSKI v (elimLambda body) | null vs = toSKI v (elimLambda body)
| otherwise = elimLambda (SLambda [v] (SLambda vs body)) | otherwise = elimLambda (SLambda [v] (SLambda vs body))
go (SApp f g) = SApp (elimLambda f) (elimLambda g) go (SApp f g) = SApp (elimLambda f) (elimLambda g)
go x = x go x = x
toSKI x (SVar y) toSKI x (SVar y)
| x == y = _I | x == y = _I
@ -68,7 +75,6 @@ elimLambda = go
| otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u) | otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u)
toSKI x t toSKI x t
| not (isFree x t) = SApp _K t | not (isFree x t) = SApp _K t
| otherwise = SApp (SApp _S (toSKI x t)) TLeaf
_S = parseSingle "t (t (t t t)) t" _S = parseSingle "t (t (t t t)) t"
_K = parseSingle "t t" _K = parseSingle "t t"

View File

@ -25,180 +25,216 @@ runTricu s = show $ result (evalTricu Map.empty $ parseTricu s)
tests :: TestTree tests :: TestTree
tests = testGroup "Tricu Tests" tests = testGroup "Tricu Tests"
[ lexerTests [ lexer
, parserTests , parser
, evaluationTests , simpleEvaluation
, lambdaEvalTests , lambdas
, libraryTests , baseLibrary
, fileEvaluationTests , fileEval
, demos
] ]
lexerTests :: TestTree lexer :: TestTree
lexerTests = testGroup "Lexer Tests" lexer = testGroup "Lexer Tests"
[ testCase "Lex simple identifiers" $ do [ testCase "Lex simple identifiers" $ do
let input = "x a b = a" let input = "x a b = a"
expect = Right [LIdentifier "x", LIdentifier "a", LIdentifier "b", LAssign, LIdentifier "a"] expect = Right [LIdentifier "x", LIdentifier "a", LIdentifier "b", LAssign, LIdentifier "a"]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex Tree Calculus terms" $ do , testCase "Lex Tree Calculus terms" $ do
let input = "t t t" let input = "t t t"
expect = Right [LKeywordT, LKeywordT, LKeywordT] expect = Right [LKeywordT, LKeywordT, LKeywordT]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex escaped characters in strings" $ do , testCase "Lex escaped characters in strings" $ do
let input = "\"hello\\nworld\"" let input = "\"hello\\nworld\""
expect = Right [LStringLiteral "hello\\nworld"] expect = Right [LStringLiteral "hello\\nworld"]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex mixed literals" $ do , testCase "Lex mixed literals" $ do
let input = "t \"string\" 42" let input = "t \"string\" 42"
expect = Right [LKeywordT, LStringLiteral "string", LIntegerLiteral 42] expect = Right [LKeywordT, LStringLiteral "string", LIntegerLiteral 42]
runParser tricuLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex invalid token" $ do , testCase "Lex invalid token" $ do
let input = "&invalid" let input = "&invalid"
case runParser tricuLexer "" input of case runParser tricuLexer "" input of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected lexer to fail on invalid token" Right _ -> assertFailure "Expected lexer to fail on invalid token"
, testCase "Drop trailing whitespace in definitions" $ do , testCase "Drop trailing whitespace in definitions" $ do
let input = "x = 5 " let input = "x = 5 "
expect = [LIdentifier "x",LAssign,LIntegerLiteral 5] expect = [LIdentifier "x",LAssign,LIntegerLiteral 5]
case (runParser tricuLexer "" input) of case (runParser tricuLexer "" input) of
Left _ -> assertFailure "Failed to lex input" Left _ -> assertFailure "Failed to lex input"
Right i -> i @?= expect Right i -> i @?= expect
, testCase "Error when using invalid characters in identifiers" $ do , testCase "Error when using invalid characters in identifiers" $ do
case (runParser tricuLexer "" "__result = 5") of case (runParser tricuLexer "" "__result = 5") of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of __result" Right _ -> assertFailure "Expected failure when trying to assign the value of __result"
] ]
parserTests :: TestTree parser :: TestTree
parserTests = testGroup "Parser Tests" parser = testGroup "Parser Tests"
[ testCase "Error when assigning a value to T" $ do [ testCase "Error when assigning a value to T" $ do
let tokens = lexTricu "t = x" let tokens = lexTricu "t = x"
case parseSingleExpr tokens of case parseSingleExpr tokens of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of T" Right _ -> assertFailure "Expected failure when trying to assign the value of T"
, testCase "Parse function definitions" $ do , testCase "Parse function definitions" $ do
let input = "x = (\\a b c : a)" let input = "x = (\\a b c : a)"
expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a")))) expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested Tree Calculus terms" $ do , testCase "Parse nested Tree Calculus terms" $ do
let input = "t (t t) t" let input = "t (t t) t"
expect = SApp (SApp TLeaf (SApp TLeaf TLeaf)) TLeaf expect = SApp (SApp TLeaf (SApp TLeaf TLeaf)) TLeaf
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse sequential Tree Calculus terms" $ do , testCase "Parse sequential Tree Calculus terms" $ do
let input = "t t t" let input = "t t t"
expect = SApp (SApp TLeaf TLeaf) TLeaf expect = SApp (SApp TLeaf TLeaf) TLeaf
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse mixed list literals" $ do , testCase "Parse mixed list literals" $ do
let input = "[t (\"hello\") t]" let input = "[t (\"hello\") t]"
expect = SList [TLeaf, SStr "hello", TLeaf] expect = SList [TLeaf, SStr "hello", TLeaf]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse function with applications" $ do , testCase "Parse function with applications" $ do
let input = "f = (\\x : t x)" let input = "f = (\\x : t x)"
expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x"))) expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested lists" $ do , testCase "Parse nested lists" $ do
let input = "[t [(t t)]]" let input = "[t [(t t)]]"
expect = SList [TLeaf,SList [SApp TLeaf TLeaf]] expect = SList [TLeaf,SList [SApp TLeaf TLeaf]]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse complex parentheses" $ do , testCase "Parse complex parentheses" $ do
let input = "t (t t (t t))" let input = "t (t t (t t))"
expect = SApp TLeaf (SApp (SApp TLeaf TLeaf) (SApp TLeaf TLeaf)) expect = SApp TLeaf (SApp (SApp TLeaf TLeaf) (SApp TLeaf TLeaf))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse empty list" $ do , testCase "Parse empty list" $ do
let input = "[]" let input = "[]"
expect = SList [] expect = SList []
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse multiple nested lists" $ do , testCase "Parse multiple nested lists" $ do
let input = "[[t t] [t (t t)]]" let input = "[[t t] [t (t t)]]"
expect = SList [SList [TLeaf,TLeaf],SList [TLeaf,SApp TLeaf TLeaf]] expect = SList [SList [TLeaf,TLeaf],SList [TLeaf,SApp TLeaf TLeaf]]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse whitespace variance" $ do , testCase "Parse whitespace variance" $ do
let input1 = "[t t]" let input1 = "[t t]"
let input2 = "[ t t ]" let input2 = "[ t t ]"
expect = SList [TLeaf, TLeaf] expect = SList [TLeaf, TLeaf]
parseSingle input1 @?= expect parseSingle input1 @?= expect
parseSingle input2 @?= expect parseSingle input2 @?= expect
, testCase "Parse string in list" $ do , testCase "Parse string in list" $ do
let input = "[(\"hello\")]" let input = "[(\"hello\")]"
expect = SList [SStr "hello"] expect = SList [SStr "hello"]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse parentheses inside list" $ do , testCase "Parse parentheses inside list" $ do
let input = "[t (t t)]" let input = "[t (t t)]"
expect = SList [TLeaf,SApp TLeaf TLeaf] expect = SList [TLeaf,SApp TLeaf TLeaf]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested parentheses in function body" $ do , testCase "Parse nested parentheses in function body" $ do
let input = "f = (\\x : t (t (t t)))" let input = "f = (\\x : t (t (t t)))"
expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf)))) expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse lambda abstractions" $ do , testCase "Parse lambda abstractions" $ do
let input = "(\\a : a)" let input = "(\\a : a)"
expect = (SLambda ["a"] (SVar "a")) expect = (SLambda ["a"] (SVar "a"))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse multiple arguments to lambda abstractions" $ do , testCase "Parse multiple arguments to lambda abstractions" $ do
let input = "x = (\\a b : a)" let input = "x = (\\a b : a)"
expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a"))) expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Grouping T terms with parentheses in function application" $ do , testCase "Grouping T terms with parentheses in function application" $ do
let input = "x = (\\a : a)\nx (t)" let input = "x = (\\a : a)\nx (t)"
expect = [SFunc "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf] expect = [SFunc "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
parseTricu input @?= expect parseTricu input @?= expect
, testCase "Comments 1" $ do , testCase "Comments 1" $ do
let input = "(t) (t) -- (t)" let input = "(t) (t) -- (t)"
expect = [SApp TLeaf TLeaf] expect = [SApp TLeaf TLeaf]
parseTricu input @?= expect parseTricu input @?= expect
, testCase "Comments 2" $ do , testCase "Comments 2" $ do
let input = "(t) -- (t) -- (t)" let input = "(t) -- (t) -- (t)"
expect = [TLeaf] expect = [TLeaf]
parseTricu input @?= expect parseTricu input @?= expect
] ]
evaluationTests :: TestTree simpleEvaluation :: TestTree
evaluationTests = testGroup "Evaluation Tests" simpleEvaluation = testGroup "Evaluation Tests"
[ testCase "Evaluate single Leaf" $ do [ testCase "Evaluate single Leaf" $ do
let input = "t" let input = "t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Leaf (result $ evalSingle Map.empty ast) @?= Leaf
, testCase "Evaluate single Stem" $ do , testCase "Evaluate single Stem" $ do
let input = "t t" let input = "t t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Stem Leaf (result $ evalSingle Map.empty ast) @?= Stem Leaf
, testCase "Evaluate single Fork" $ do , testCase "Evaluate single Fork" $ do
let input = "t t t" let input = "t t t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Fork Leaf Leaf (result $ evalSingle Map.empty ast) @?= Fork Leaf Leaf
, testCase "Evaluate nested Fork and Stem" $ do , testCase "Evaluate nested Fork and Stem" $ do
let input = "t (t t) t" let input = "t (t t) t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Fork (Stem Leaf) Leaf (result $ evalSingle Map.empty ast) @?= Fork (Stem Leaf) Leaf
, testCase "Evaluate `not` function" $ do , testCase "Evaluate `not` function" $ do
let input = "t (t (t t) (t t t)) t" let input = "t (t (t t) (t t t)) t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= (result $ evalSingle Map.empty ast) @?=
Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
, testCase "Environment updates with definitions" $ do , testCase "Environment updates with definitions" $ do
let input = "x = t\ny = x" let input = "x = t\ny = x"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
Map.lookup "x" env @?= Just Leaf Map.lookup "x" env @?= Just Leaf
Map.lookup "y" env @?= Just Leaf Map.lookup "y" env @?= Just Leaf
, testCase "Variable substitution" $ do , testCase "Variable substitution" $ do
let input = "x = t t\ny = t x\ny" let input = "x = t t\ny = t x\ny"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
(result env) @?= Stem (Stem Leaf) (result env) @?= Stem (Stem Leaf)
, testCase "Multiline input evaluation" $ do , testCase "Multiline input evaluation" $ do
let input = "x = t\ny = t t\nx" let input = "x = t\ny = t t\nx"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
(result env) @?= Leaf (result env) @?= Leaf
, testCase "Evaluate string literal" $ do , testCase "Evaluate string literal" $ do
let input = "\"hello\"" let input = "\"hello\""
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofString "hello" (result $ evalSingle Map.empty ast) @?= ofString "hello"
, testCase "Evaluate list literal" $ do , testCase "Evaluate list literal" $ do
let input = "[t (t t)]" let input = "[t (t t)]"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofList [Leaf, Stem Leaf] (result $ evalSingle Map.empty ast) @?= ofList [Leaf, Stem Leaf]
, testCase "Evaluate empty list" $ do , testCase "Evaluate empty list" $ do
let input = "[]" let input = "[]"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofList [] (result $ evalSingle Map.empty ast) @?= ofList []
, testCase "Evaluate variable dependency chain" $ do , testCase "Evaluate variable dependency chain" $ do
let input = "x = t (t t)\n \ let input = "x = t (t t)\n \
\ y = x\n \ \ y = x\n \
@ -207,10 +243,17 @@ evaluationTests = testGroup "Evaluation Tests"
\ variablewithamuchlongername" \ variablewithamuchlongername"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
(result env) @?= (Stem (Stem Leaf)) (result env) @?= (Stem (Stem Leaf))
, testCase "Evaluate variable shadowing" $ do
, testCase "Immutable definitions" $ do
let input = "x = t t\nx = t\nx" let input = "x = t t\nx = t\nx"
env = evalTricu Map.empty (parseTricu input) env = evalTricu Map.empty (parseTricu input)
(result env) @?= Leaf result <- try (evaluate (runTricu input)) :: IO (Either SomeException String)
case result of
Left _ -> return ()
Right _ -> assertFailure "Expected evaluation error"
, testCase "Apply identity to Boolean Not" $ do , testCase "Apply identity to Boolean Not" $ do
let not = "(t (t (t t) (t t t)) t)" let not = "(t (t (t t) (t t t)) t)"
let input = "x = (\\a : a)\nx " ++ not let input = "x = (\\a : a)\nx " ++ not
@ -218,174 +261,215 @@ evaluationTests = testGroup "Evaluation Tests"
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
] ]
lambdaEvalTests :: TestTree lambdas :: TestTree
lambdaEvalTests = testGroup "Lambda Evaluation Tests" lambdas = testGroup "Lambda Evaluation Tests"
[ testCase "Lambda Identity Function" $ do [ testCase "Lambda Identity Function" $ do
let input = "id = (\\x : x)\nid t" let input = "id = (\\x : x)\nid t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda Constant Function (K combinator)" $ do , testCase "Lambda Constant Function (K combinator)" $ do
let input = "k = (\\x y : x)\nk t (t t)" let input = "k = (\\x y : x)\nk t (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda Application with Variable" $ do , testCase "Lambda Application with Variable" $ do
let input = "id = (\\x : x)\nval = t t\nid val" let input = "id = (\\x : x)\nval = t t\nid val"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda Application with Multiple Arguments" $ do , testCase "Lambda Application with Multiple Arguments" $ do
let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)" let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Nested Lambda Application" $ do , testCase "Nested Lambda Application" $ do
let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t" let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with a complex body" $ do , testCase "Lambda with a complex body" $ do
let input = "f = (\\x : t (t x))\nf t" let input = "f = (\\x : t (t x))\nf t"
runTricu input @?= "Stem (Stem Leaf)" runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda returning a function" $ do , testCase "Lambda returning a function" $ do
let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)" let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with Shadowing" $ do , testCase "Lambda with Shadowing" $ do
let input = "f = (\\x : (\\x : x))\nf t (t t)" let input = "f = (\\x : (\\x : x))\nf t (t t)"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda returning another lambda" $ do , testCase "Lambda returning another lambda" $ do
let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)" let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with free variables" $ do , testCase "Lambda with free variables" $ do
let input = "y = t t\nf = (\\x : y)\nf t" let input = "y = t t\nf = (\\x : y)\nf t"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "SKI Composition" $ do , testCase "SKI Composition" $ do
let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)" let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)"
runTricu input @?= "Stem (Stem Leaf)" runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda with multiple parameters and application" $ do , testCase "Lambda with multiple parameters and application" $ do
let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)" let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda with nested application in the body" $ do , testCase "Lambda with nested application in the body" $ do
let input = "f = (\\x : t (t (t x)))\nf t" let input = "f = (\\x : t (t (t x)))\nf t"
runTricu input @?= "Stem (Stem (Stem Leaf))" runTricu input @?= "Stem (Stem (Stem Leaf))"
, testCase "Lambda returning a function and applying it" $ do , testCase "Lambda returning a function and applying it" $ do
let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)" let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)"
runTricu input @?= "Fork Leaf (Stem Leaf)" runTricu input @?= "Fork Leaf (Stem Leaf)"
, testCase "Lambda applying a variable" $ do , testCase "Lambda applying a variable" $ do
let input = "id = (\\x : x)\na = t t\nid a" let input = "id = (\\x : x)\na = t t\nid a"
runTricu input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Nested lambda abstractions in the same expression" $ do , testCase "Nested lambda abstractions in the same expression" $ do
let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t" let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t"
runTricu input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with a string literal" $ do , testCase "Lambda with a string literal" $ do
let input = "f = (\\x : x)\nf \"hello\"" let input = "f = (\\x : x)\nf \"hello\""
runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))" runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
, testCase "Lambda with an integer literal" $ do , testCase "Lambda with an integer literal" $ do
let input = "f = (\\x : x)\nf 42" let input = "f = (\\x : x)\nf 42"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))" runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
, testCase "Lambda with a list literal" $ do , testCase "Lambda with a list literal" $ do
let input = "f = (\\x : x)\nf [t (t t)]" let input = "f = (\\x : x)\nf [t (t t)]"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)" runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
] ]
libraryTests :: TestTree baseLibrary :: TestTree
libraryTests = testGroup "Library Tests" baseLibrary = testGroup "Library Tests"
[ testCase "K combinator 1" $ do [ testCase "K combinator 1" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "k (t) (t t)" let input = "k (t) (t t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "K combinator 2" $ do , testCase "K combinator 2" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "k (t t) (t)" let input = "k (t t) (t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "K combinator 3" $ do , testCase "K combinator 3" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "k (t t t) (t)" let input = "k (t t t) (t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf result env @?= Fork Leaf Leaf
, testCase "S combinator" $ do , testCase "S combinator" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "s (t) (t) (t)" let input = "s (t) (t) (t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf (Stem Leaf) result env @?= Fork Leaf (Stem Leaf)
, testCase "SKK == I (fully expanded)" $ do , testCase "SKK == I (fully expanded)" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "s k k" let input = "s k k"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork (Stem (Stem Leaf)) (Stem Leaf) result env @?= Fork (Stem (Stem Leaf)) (Stem Leaf)
, testCase "I combinator" $ do , testCase "I combinator" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "i not?" let input = "i not?"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) (Fork Leaf (Fork Leaf Leaf)) result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) (Fork Leaf (Fork Leaf Leaf))
, testCase "Triage test Leaf" $ do , testCase "Triage test Leaf" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "test t" let input = "test t"
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Leaf\"" env @?= "\"Leaf\""
, testCase "Triage test (Stem Leaf)" $ do , testCase "Triage test (Stem Leaf)" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "test (t t)" let input = "test (t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Stem\"" env @?= "\"Stem\""
, testCase "Triage test (Fork Leaf Leaf)" $ do , testCase "Triage test (Fork Leaf Leaf)" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "test (t t t)" let input = "test (t t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Fork\"" env @?= "\"Fork\""
, testCase "Boolean NOT: true" $ do , testCase "Boolean NOT: true" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "not? true" let input = "not? true"
env = result $ evalTricu library (parseTricu input) env = result $ evalTricu library (parseTricu input)
env @?= Leaf env @?= Leaf
, testCase "Boolean NOT: false" $ do , testCase "Boolean NOT: false" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "not? false" let input = "not? false"
env = result $ evalTricu library (parseTricu input) env = result $ evalTricu library (parseTricu input)
env @?= Stem Leaf env @?= Stem Leaf
, testCase "Boolean AND TF" $ do , testCase "Boolean AND TF" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "and? (t t) (t)" let input = "and? (t t) (t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "Boolean AND FT" $ do , testCase "Boolean AND FT" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "and? (t) (t t)" let input = "and? (t) (t t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "Boolean AND FF" $ do , testCase "Boolean AND FF" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "and? (t) (t)" let input = "and? (t) (t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "Boolean AND TT" $ do , testCase "Boolean AND TT" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "and? (t t) (t t)" let input = "and? (t t) (t t)"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "List head" $ do , testCase "List head" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "head [(t) (t t) (t t t)]" let input = "head [(t) (t t) (t t t)]"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Leaf result env @?= Leaf
, testCase "List tail" $ do , testCase "List tail" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "head (tail (tail [(t) (t t) (t t t)]))" let input = "head (tail (tail [(t) (t t) (t t t)]))"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf result env @?= Fork Leaf Leaf
, testCase "List map" $ do , testCase "List map" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))" let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf result env @?= Fork Leaf Leaf
, testCase "Empty list check" $ do , testCase "Empty list check" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "emptyList? []" let input = "emptyList? []"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "Non-empty list check" $ do , testCase "Non-empty list check" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "not? (emptyList? [(1) (2) (3)])" let input = "not? (emptyList? [(1) (2) (3)])"
env = evalTricu library (parseTricu input) env = evalTricu library (parseTricu input)
result env @?= Stem Leaf result env @?= Stem Leaf
, testCase "Concatenate strings" $ do , testCase "Concatenate strings" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "lconcat \"Hello, \" \"world!\"" let input = "lconcat \"Hello, \" \"world!\""
env = decodeResult $ result $ evalTricu library (parseTricu input) env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Hello, world!\"" env @?= "\"Hello, world!\""
, testCase "Verifying Equality" $ do , testCase "Verifying Equality" $ do
library <- evaluateFile "./lib/base.tri" library <- evaluateFile "./lib/base.tri"
let input = "equal? (t t t) (t t t)" let input = "equal? (t t t) (t t t)"
@ -393,19 +477,43 @@ libraryTests = testGroup "Library Tests"
result env @?= Stem Leaf result env @?= Stem Leaf
] ]
fileEvaluationTests :: TestTree fileEval :: TestTree
fileEvaluationTests = testGroup "Evaluation tests" fileEval = testGroup "File evaluation tests"
[ testCase "Forks" $ do [ testCase "Forks" $ do
res <- liftIO $ evaluateFileResult "./test/fork.tri" res <- liftIO $ evaluateFileResult "./test/fork.tri"
res @?= Fork Leaf Leaf res @?= Fork Leaf Leaf
, testCase "File ends with comment" $ do , testCase "File ends with comment" $ do
res <- liftIO $ evaluateFileResult "./test/comments-1.tri" res <- liftIO $ evaluateFileResult "./test/comments-1.tri"
res @?= Fork (Stem Leaf) Leaf res @?= Fork (Stem Leaf) Leaf
, testCase "Mapping and Equality" $ do , testCase "Mapping and Equality" $ do
res <- liftIO $ evaluateFileResult "./test/map.tri" res <- liftIO $ evaluateFileResult "./test/map.tri"
res @?= Stem Leaf res @?= Stem Leaf
, testCase "Eval and decoding string" $ do , testCase "Eval and decoding string" $ do
library <- liftIO $ evaluateFile "./lib/base.tri" library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./test/string.tri" res <- liftIO $ evaluateFileWithContext library "./test/string.tri"
decodeResult (result res) @?= "\"String test!\"" decodeResult (result res) @?= "\"String test!\""
] ]
demos :: TestTree
demos = testGroup "Test provided demo functionality"
[ testCase "Structural equality demo" $ do
library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./demos/equality.tri"
decodeResult (result res) @?= "t t"
, testCase "Convert values back to source code demo" $ do
library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./demos/toSource.tri"
decodeResult (result res) @?= "\"(t (t (t t) (t t t)) (t t (t t t)))\""
, testCase "Determining the size of functions" $ do
library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./demos/size.tri"
decodeResult (result res) @?= "2071"
, testCase "Level Order Traversal demo" $ do
library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./demos/levelOrderTraversal.tri"
decodeResult (result res) @?= "\"\n1 \n2 3 \n4 5 6 7 \n8 11 10 9 12 \""
]