6 Commits

Author SHA1 Message Date
2bd388c871 Eval optimization! Tests for demos
All checks were successful
Test, Build, and Release / test (push) Successful in 1m30s
Test, Build, and Release / build (push) Successful in 1m26s
2025-01-25 09:18:13 -06:00
1f5a910fb2 Immutable definitions and documentation updates
All checks were successful
Test, Build, and Release / test (push) Successful in 1m22s
Test, Build, and Release / build (push) Successful in 1m23s
2025-01-24 16:14:33 -06:00
8b043911ca Add size demo 2025-01-23 18:57:59 -06:00
2e246eb1c8 Remove Nix caching that can't work due to /nix/store permissions
All checks were successful
Test, Build, and Release / test (push) Successful in 1m13s
Test, Build, and Release / build (push) Successful in 1m23s
2025-01-23 17:59:47 -06:00
ba340ae56f Update README to reflect demo
Some checks failed
Test, Build, and Release / build (push) Has been cancelled
Test, Build, and Release / test (push) Has been cancelled
2025-01-23 17:36:39 -06:00
739851c864 Minify and mark as pre-release
Some checks failed
Test, Build, and Release / test (push) Successful in 1m59s
Test, Build, and Release / build (push) Failing after 2m12s
2025-01-23 17:23:02 -06:00
10 changed files with 236 additions and 100 deletions

View File

@ -28,16 +28,6 @@ jobs:
restore-keys: |
cabal-
- name: Set up cache for Nix
uses: actions/cache@v4
with:
path: |
/nix/store
/nix/var/nix/cache
key: nix-${{ hashFiles('flake.lock') }}
restore-keys: |
nix-
- name: Initialize Cabal and update package list
run: |
nix develop --command cabal update
@ -58,22 +48,14 @@ jobs:
with:
fetch-depth: 0
- name: Set up cache for Nix
uses: actions/cache@v4
with:
path: |
/nix/store
/nix/var/nix/cache
key: nix-${{ hashFiles('flake.lock') }}
restore-keys: |
nix-
- name: Build binary
- name: Build and shrink binary
run: |
nix build
ls -alh ./result/bin/tricu
cp -L ./result/bin/tricu ./tricu
chmod 755 ./tricu
nix develop --command upx ./tricu
- name: Setup go for release actoin
- name: Setup go for release action
uses: actions/setup-go@v5
with:
go-version: '>=1.20.1'
@ -82,5 +64,6 @@ jobs:
uses: https://gitea.com/actions/release-action@main
with:
files: |-
./result/bin/tricu
./tricu
api_key: '${{ secrets.RELEASE_TOKEN }}'
pre_release: true

View File

@ -2,21 +2,22 @@
## Introduction
tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. [I'm](https://eversole.co) developing tricu to further research the possibilities offered by the various forms of [Tree Calculi](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf).
tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. It is fundamentally based on the application of [Tree Calculus](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf) terms, but minimal syntax sugar is included to provide a useful programming tool.
tricu offers minimal syntax sugar yet manages to provide a complete, intuitive, and familiar programming environment. There is great power in simplicity. tricu offers:
tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`.
1. `t` operator behaving by the rules of Tree Calculus
1. Function definitions/assignments
1. Lambda abstractions eliminated to Tree Calculus forms
1. List, Number, and String literals
1. Parentheses for grouping function application
## Features
These features move us cleanly out of the [turing tarpit](https://en.wikipedia.org/wiki/Turing_tarpit) territory that you may find yourself in if you try working only with the `t` operator.
- Tree Calculus operator: `t`
- Assignments: `x = t t`
- Lambda abstraction syntax: `id = (\a : a)`
- List, Number, and String literals: `[(2) ("Hello")]`
- Function application: `not (not false)`
- Higher order/first-class functions: `map (\a : lconcat a "!") [("Hello")]`
- Intensionality blurs the distinction between functions and data (see REPL examples)
- Immutability
tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`. This project was named "sapling" until I discovered the name is already being used for other (completely unrelated) programming language development projects.
## What does it look like?
## REPL examples
```
tricu < -- Anything after `--` on a single line is a comment
@ -26,19 +27,24 @@ tricu > "Hello, world!"
tricu < id (head (map (\i : lconcat i " world!") [("Hello, ")]))
tricu > "Hello, world!"
tricu < -- Intensionality! We can inspect the structure of a function.
tricu < -- Intensionality! We can inspect the structure of a function or data.
tricu < triage = (\a b c : t (t a b) c)
tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork")
tricu < test (t t)
tricu > "Stem"
tricu < -- We can even write a function to convert a term back to source code
tricu < -- We can even convert a term back to source code (/demos/toSource.tri)
tricu < toSource not?
tricu > "(t (t (t t) (t t t)) (t t (t t t)))"
tricu < -- or calculate its size (/demos/size.tri)
tricu < size not?
tricu > 12
```
## Installation and Use
You can easily build and/or run this project using [Nix](https://nixos.org/download/).
[Releases are available for Linux.](https://git.eversole.co/James/tricu/releases)
Or you can easily build and/or run this project using [Nix](https://nixos.org/download/).
- Quick Start (REPL):
- `nix run git+https://git.eversole.co/James/tricu`
@ -79,4 +85,4 @@ tricu decode [OPTIONS]
Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog).
[treecalcul.us](https://treecalcul.us) is an excellent website with an intuitive playground created by [Johannes Bader](https://johannes-bader.com/) that introduced me to Tree Calculus. If tricu sounds interesting but compiling this repo sounds like a hassle, you should check out his site.
[treecalcul.us](https://treecalcul.us) is an excellent website with an intuitive Tree Calculus code playground created by [Johannes Bader](https://johannes-bader.com/) that introduced me to Tree Calculus.

View File

@ -1,24 +1,35 @@
false = t
true = t t
-- We represent `false` with a Leaf and `true` with a Stem Leaf
demo_false = t
demo_true = t t
triage = (\a b c : t (t a b) c)
-- Tree Calculus representation of the Boolean `not` function
not_TC? = t (t (t t) (t t t)) (t t (t t t))
matchBool = (\ot of : triage
-- /demos/toSource.tri contains an explanation of `triage`
demo_triage = (\a b c : t (t a b) c)
demo_matchBool = (\ot of : demo_triage
of
(\_ : ot)
(\_ _ : ot)
)
-- Lambda representation of the Boolean `not` function
not_Lambda? = demo_matchBool demo_false demo_true
not_TC? = t (t (t t) (t t t)) (t t (t t t))
not_Lambda? = matchBool false true
-- Since tricu eliminates Lambda terms to SKI combinators, the tree form of many
-- functions defined via Lambda terms are larger than the most efficient TC
-- representation. Between different languages that evaluate to tree calculus
-- terms, the exact implementation of Lambda elimination may differ and lead
-- to different tree representations even if they share extensional behavior.
areEqual? = equal not_TC not_Lambda
-- Let's see if these are the same:
lambdaEqualsTC = equal? not_TC? not_Lambda?
true_TC? = not_TC false
false_TC? = not_TC true
-- Here are some checks to verify their extensional behavior is the same:
true_TC? = not_TC? demo_false
false_TC? = not_TC? demo_true
true_Lambda? = not_Lambda false
false_Lambda? = not_Lambda true
true_Lambda? = not_Lambda? demo_false
false_Lambda? = not_Lambda? demo_true
areTrueEqual? = equal true_TC true_Lambda
areFalseEqual? = equal false_TC false_Lambda
bothTrueEqual? = equal? true_TC? true_Lambda?
bothFalseEqual? = equal? false_TC? false_Lambda?

View File

@ -4,7 +4,7 @@
-- NOTICE: This demo relies on tricu base library functions
--
-- We model labelled binary trees as sublists where values act as labels. We
-- require explicit notation of empty nodes. Empty nodes can be represented
-- require explicit not?ation of empty nodes. Empty nodes can be represented
-- with an empty list, `[]`, which is equivalent to a single node `t`.
--
-- Example tree inputs:
@ -19,33 +19,33 @@
label = (\node : head node)
left = (\node : if (emptyList node)
left = (\node : if (emptyList? node)
[]
(if (emptyList (tail node))
(if (emptyList? (tail node))
[]
(head (tail node))))
right = (\node : if (emptyList node)
right = (\node : if (emptyList? node)
[]
(if (emptyList (tail node))
(if (emptyList? (tail node))
[]
(if (emptyList (tail (tail node)))
(if (emptyList? (tail (tail node)))
[]
(head (tail (tail node))))))
processLevel = y (\self queue : if (emptyList queue)
processLevel = y (\self queue : if (emptyList? queue)
[]
(pair (map label queue) (self (filter
(\node : not (emptyList node))
(\node : not? (emptyList? node))
(lconcat (map left queue) (map right queue))))))
levelOrderTraversal_ = (\a : processLevel (t a t))
toLineString = y (\self levels : if (emptyList levels)
toLineString = y (\self levels : if (emptyList? levels)
""
(lconcat
(lconcat (map (\x : lconcat x " ") (head levels)) "")
(if (emptyList (tail levels)) "" (lconcat (t (t 10 t) t) (self (tail levels))))))
(if (emptyList? (tail levels)) "" (lconcat (t (t 10 t) t) (self (tail levels))))))
levelOrderToString = (\s : toLineString (levelOrderTraversal_ s))

21
demos/size.tri Normal file
View File

@ -0,0 +1,21 @@
compose = (\f g x : f (g x))
succ = y (\self :
triage
1
t
(triage
(t (t t))
(\_ tail : t t (self tail))
t))
size = (\x :
(y (\self x :
compose succ
(triage
(\x : x)
self
(\x y : compose (self x) (self y))
x)) x 0))
size size

View File

@ -2,13 +2,13 @@
-- even if it's a function. This includes lambdas which are eliminated to
-- Tree Calculus (TC) terms during evaluation.
-- Triage takes four arguments: the first three represent behaviors for each
-- `triage` takes four arguments: the first three represent behaviors for each
-- structural case in Tree Calculus (Leaf, Stem, and Fork).
-- The fourth argument is the value whose structure is inspected. By evaluating
-- the Tree Calculus term, `triage` enables branching logic based on the term's
-- shape, making it possible to perform structure-specific operations such as
-- reconstructing the terms' source code representation.
triage = (\a b c : t (t a b) c)
-- triage = (\leaf stem fork : t (t leaf stem) fork)
-- Base case of a single Leaf
sourceLeaf = t (head "t")
@ -34,13 +34,13 @@ sourceFork = (\convert : (\a b rest :
-- Wrapper around triage
toSource_ = y (\self arg :
triage
sourceLeaf -- Triage `a` case, Leaf
(sourceStem self) -- Triage `b` case, Stem
(sourceFork self) -- Triage `c` case, Fork
sourceLeaf -- `triage` "a" case, Leaf
(sourceStem self) -- `triage` "b" case, Stem
(sourceFork self) -- `triage` "c" case, Fork
arg) -- The term to be inspected
-- toSource takes a single TC term and returns a String
toSource = (\v : toSource_ v "")
exampleOne = toSource true -- OUT: "(t t)"
exampleTwo = toSource not -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"
exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"

View File

@ -32,10 +32,11 @@
defaultPackage = self.packages.${system}.default;
devShells.default = pkgs.mkShell {
buildInputs = with pkgs.haskellPackages; [
cabal-install
ghcid
buildInputs = with pkgs; [
haskellPackages.cabal-install
haskellPackages.ghcid
customGHC
upx
];
inputsFrom = builtins.attrValues self.packages.${system};
};

View File

@ -18,7 +18,7 @@ id = (\a : a)
pair = t
if = (\cond then else : t (t else (t t then)) t cond)
triage = (\a b c : t (t a b) c)
triage = (\leaf stem fork : t (t leaf stem) fork)
test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork")
matchBool = (\ot of : triage

View File

@ -11,15 +11,20 @@ import qualified Data.Set as Set
evalSingle :: Env -> TricuAST -> Env
evalSingle env term
| SFunc name [] body <- term =
let res = evalAST env body
in Map.insert "__result" res (Map.insert name res env)
if
| Map.member name env ->
errorWithoutStackTrace $
"Error: Identifier '" ++ name ++ "' is already defined."
| otherwise ->
let res = evalAST env body
in Map.insert "__result" res (Map.insert name res env)
| SApp func arg <- term =
let res = apply (evalAST env func) (evalAST env arg)
in Map.insert "__result" res env
| SVar name <- term =
case Map.lookup name env of
Just v -> Map.insert "__result" v env
Nothing -> errorWithoutStackTrace $ "Variable " ++ name ++ " not defined"
Nothing -> errorWithoutStackTrace $ "Variable `" ++ name ++ "` not defined"
| otherwise =
Map.insert "__result" (evalAST env term) env
@ -54,11 +59,13 @@ evalAST env term
elimLambda :: TricuAST -> TricuAST
elimLambda = go
where
go (SLambda [v] (SApp f (SVar x)))
| v == x && not (isFree v f) = elimLambda f
go (SLambda (v:vs) body)
| null vs = toSKI v (elimLambda body)
| otherwise = elimLambda (SLambda [v] (SLambda vs body))
go (SApp f g) = SApp (elimLambda f) (elimLambda g)
go x = x
| null vs = toSKI v (elimLambda body)
| otherwise = elimLambda (SLambda [v] (SLambda vs body))
go (SApp f g) = SApp (elimLambda f) (elimLambda g)
go x = x
toSKI x (SVar y)
| x == y = _I
@ -68,7 +75,6 @@ elimLambda = go
| otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u)
toSKI x t
| not (isFree x t) = SApp _K t
| otherwise = SApp (SApp _S (toSKI x t)) TLeaf
_S = parseSingle "t (t (t t t)) t"
_K = parseSingle "t t"

View File

@ -25,180 +25,216 @@ runTricu s = show $ result (evalTricu Map.empty $ parseTricu s)
tests :: TestTree
tests = testGroup "Tricu Tests"
[ lexerTests
, parserTests
, evaluationTests
, lambdaEvalTests
, libraryTests
, fileEvaluationTests
[ lexer
, parser
, simpleEvaluation
, lambdas
, baseLibrary
, fileEval
, demos
]
lexerTests :: TestTree
lexerTests = testGroup "Lexer Tests"
lexer :: TestTree
lexer = testGroup "Lexer Tests"
[ testCase "Lex simple identifiers" $ do
let input = "x a b = a"
expect = Right [LIdentifier "x", LIdentifier "a", LIdentifier "b", LAssign, LIdentifier "a"]
runParser tricuLexer "" input @?= expect
, testCase "Lex Tree Calculus terms" $ do
let input = "t t t"
expect = Right [LKeywordT, LKeywordT, LKeywordT]
runParser tricuLexer "" input @?= expect
, testCase "Lex escaped characters in strings" $ do
let input = "\"hello\\nworld\""
expect = Right [LStringLiteral "hello\\nworld"]
runParser tricuLexer "" input @?= expect
, testCase "Lex mixed literals" $ do
let input = "t \"string\" 42"
expect = Right [LKeywordT, LStringLiteral "string", LIntegerLiteral 42]
runParser tricuLexer "" input @?= expect
, testCase "Lex invalid token" $ do
let input = "&invalid"
case runParser tricuLexer "" input of
Left _ -> return ()
Right _ -> assertFailure "Expected lexer to fail on invalid token"
, testCase "Drop trailing whitespace in definitions" $ do
let input = "x = 5 "
expect = [LIdentifier "x",LAssign,LIntegerLiteral 5]
case (runParser tricuLexer "" input) of
Left _ -> assertFailure "Failed to lex input"
Right i -> i @?= expect
, testCase "Error when using invalid characters in identifiers" $ do
case (runParser tricuLexer "" "__result = 5") of
Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of __result"
]
parserTests :: TestTree
parserTests = testGroup "Parser Tests"
parser :: TestTree
parser = testGroup "Parser Tests"
[ testCase "Error when assigning a value to T" $ do
let tokens = lexTricu "t = x"
case parseSingleExpr tokens of
Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of T"
, testCase "Parse function definitions" $ do
let input = "x = (\\a b c : a)"
expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
parseSingle input @?= expect
, testCase "Parse nested Tree Calculus terms" $ do
let input = "t (t t) t"
expect = SApp (SApp TLeaf (SApp TLeaf TLeaf)) TLeaf
parseSingle input @?= expect
, testCase "Parse sequential Tree Calculus terms" $ do
let input = "t t t"
expect = SApp (SApp TLeaf TLeaf) TLeaf
parseSingle input @?= expect
, testCase "Parse mixed list literals" $ do
let input = "[t (\"hello\") t]"
expect = SList [TLeaf, SStr "hello", TLeaf]
parseSingle input @?= expect
, testCase "Parse function with applications" $ do
let input = "f = (\\x : t x)"
expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
parseSingle input @?= expect
, testCase "Parse nested lists" $ do
let input = "[t [(t t)]]"
expect = SList [TLeaf,SList [SApp TLeaf TLeaf]]
parseSingle input @?= expect
, testCase "Parse complex parentheses" $ do
let input = "t (t t (t t))"
expect = SApp TLeaf (SApp (SApp TLeaf TLeaf) (SApp TLeaf TLeaf))
parseSingle input @?= expect
, testCase "Parse empty list" $ do
let input = "[]"
expect = SList []
parseSingle input @?= expect
, testCase "Parse multiple nested lists" $ do
let input = "[[t t] [t (t t)]]"
expect = SList [SList [TLeaf,TLeaf],SList [TLeaf,SApp TLeaf TLeaf]]
parseSingle input @?= expect
, testCase "Parse whitespace variance" $ do
let input1 = "[t t]"
let input2 = "[ t t ]"
expect = SList [TLeaf, TLeaf]
parseSingle input1 @?= expect
parseSingle input2 @?= expect
, testCase "Parse string in list" $ do
let input = "[(\"hello\")]"
expect = SList [SStr "hello"]
parseSingle input @?= expect
, testCase "Parse parentheses inside list" $ do
let input = "[t (t t)]"
expect = SList [TLeaf,SApp TLeaf TLeaf]
parseSingle input @?= expect
, testCase "Parse nested parentheses in function body" $ do
let input = "f = (\\x : t (t (t t)))"
expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
parseSingle input @?= expect
, testCase "Parse lambda abstractions" $ do
let input = "(\\a : a)"
expect = (SLambda ["a"] (SVar "a"))
parseSingle input @?= expect
, testCase "Parse multiple arguments to lambda abstractions" $ do
let input = "x = (\\a b : a)"
expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
parseSingle input @?= expect
, testCase "Grouping T terms with parentheses in function application" $ do
let input = "x = (\\a : a)\nx (t)"
expect = [SFunc "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
parseTricu input @?= expect
, testCase "Comments 1" $ do
let input = "(t) (t) -- (t)"
expect = [SApp TLeaf TLeaf]
parseTricu input @?= expect
, testCase "Comments 2" $ do
let input = "(t) -- (t) -- (t)"
expect = [TLeaf]
parseTricu input @?= expect
]
evaluationTests :: TestTree
evaluationTests = testGroup "Evaluation Tests"
simpleEvaluation :: TestTree
simpleEvaluation = testGroup "Evaluation Tests"
[ testCase "Evaluate single Leaf" $ do
let input = "t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Leaf
, testCase "Evaluate single Stem" $ do
let input = "t t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Stem Leaf
, testCase "Evaluate single Fork" $ do
let input = "t t t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Fork Leaf Leaf
, testCase "Evaluate nested Fork and Stem" $ do
let input = "t (t t) t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Fork (Stem Leaf) Leaf
, testCase "Evaluate `not` function" $ do
let input = "t (t (t t) (t t t)) t"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?=
Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
, testCase "Environment updates with definitions" $ do
let input = "x = t\ny = x"
env = evalTricu Map.empty (parseTricu input)
Map.lookup "x" env @?= Just Leaf
Map.lookup "y" env @?= Just Leaf
, testCase "Variable substitution" $ do
let input = "x = t t\ny = t x\ny"
env = evalTricu Map.empty (parseTricu input)
(result env) @?= Stem (Stem Leaf)
, testCase "Multiline input evaluation" $ do
let input = "x = t\ny = t t\nx"
env = evalTricu Map.empty (parseTricu input)
(result env) @?= Leaf
, testCase "Evaluate string literal" $ do
let input = "\"hello\""
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofString "hello"
, testCase "Evaluate list literal" $ do
let input = "[t (t t)]"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofList [Leaf, Stem Leaf]
, testCase "Evaluate empty list" $ do
let input = "[]"
let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofList []
, testCase "Evaluate variable dependency chain" $ do
let input = "x = t (t t)\n \
\ y = x\n \
@ -207,10 +243,17 @@ evaluationTests = testGroup "Evaluation Tests"
\ variablewithamuchlongername"
env = evalTricu Map.empty (parseTricu input)
(result env) @?= (Stem (Stem Leaf))
, testCase "Evaluate variable shadowing" $ do
, testCase "Immutable definitions" $ do
let input = "x = t t\nx = t\nx"
env = evalTricu Map.empty (parseTricu input)
(result env) @?= Leaf
result <- try (evaluate (runTricu input)) :: IO (Either SomeException String)
case result of
Left _ -> return ()
Right _ -> assertFailure "Expected evaluation error"
, testCase "Apply identity to Boolean Not" $ do
let not = "(t (t (t t) (t t t)) t)"
let input = "x = (\\a : a)\nx " ++ not
@ -218,174 +261,215 @@ evaluationTests = testGroup "Evaluation Tests"
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
]
lambdaEvalTests :: TestTree
lambdaEvalTests = testGroup "Lambda Evaluation Tests"
lambdas :: TestTree
lambdas = testGroup "Lambda Evaluation Tests"
[ testCase "Lambda Identity Function" $ do
let input = "id = (\\x : x)\nid t"
runTricu input @?= "Leaf"
, testCase "Lambda Constant Function (K combinator)" $ do
let input = "k = (\\x y : x)\nk t (t t)"
runTricu input @?= "Leaf"
, testCase "Lambda Application with Variable" $ do
let input = "id = (\\x : x)\nval = t t\nid val"
runTricu input @?= "Stem Leaf"
, testCase "Lambda Application with Multiple Arguments" $ do
let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)"
runTricu input @?= "Leaf"
, testCase "Nested Lambda Application" $ do
let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t"
runTricu input @?= "Leaf"
, testCase "Lambda with a complex body" $ do
let input = "f = (\\x : t (t x))\nf t"
runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda returning a function" $ do
let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)"
runTricu input @?= "Leaf"
, testCase "Lambda with Shadowing" $ do
let input = "f = (\\x : (\\x : x))\nf t (t t)"
runTricu input @?= "Stem Leaf"
, testCase "Lambda returning another lambda" $ do
let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)"
runTricu input @?= "Leaf"
, testCase "Lambda with free variables" $ do
let input = "y = t t\nf = (\\x : y)\nf t"
runTricu input @?= "Stem Leaf"
, testCase "SKI Composition" $ do
let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)"
runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda with multiple parameters and application" $ do
let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)"
runTricu input @?= "Stem Leaf"
, testCase "Lambda with nested application in the body" $ do
let input = "f = (\\x : t (t (t x)))\nf t"
runTricu input @?= "Stem (Stem (Stem Leaf))"
, testCase "Lambda returning a function and applying it" $ do
let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)"
runTricu input @?= "Fork Leaf (Stem Leaf)"
, testCase "Lambda applying a variable" $ do
let input = "id = (\\x : x)\na = t t\nid a"
runTricu input @?= "Stem Leaf"
, testCase "Nested lambda abstractions in the same expression" $ do
let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t"
runTricu input @?= "Leaf"
, testCase "Lambda with a string literal" $ do
let input = "f = (\\x : x)\nf \"hello\""
runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
, testCase "Lambda with an integer literal" $ do
let input = "f = (\\x : x)\nf 42"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
, testCase "Lambda with a list literal" $ do
let input = "f = (\\x : x)\nf [t (t t)]"
runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
]
libraryTests :: TestTree
libraryTests = testGroup "Library Tests"
baseLibrary :: TestTree
baseLibrary = testGroup "Library Tests"
[ testCase "K combinator 1" $ do
library <- evaluateFile "./lib/base.tri"
let input = "k (t) (t t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "K combinator 2" $ do
library <- evaluateFile "./lib/base.tri"
let input = "k (t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "K combinator 3" $ do
library <- evaluateFile "./lib/base.tri"
let input = "k (t t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf
, testCase "S combinator" $ do
library <- evaluateFile "./lib/base.tri"
let input = "s (t) (t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf (Stem Leaf)
, testCase "SKK == I (fully expanded)" $ do
library <- evaluateFile "./lib/base.tri"
let input = "s k k"
env = evalTricu library (parseTricu input)
result env @?= Fork (Stem (Stem Leaf)) (Stem Leaf)
, testCase "I combinator" $ do
library <- evaluateFile "./lib/base.tri"
let input = "i not?"
env = evalTricu library (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) (Fork Leaf (Fork Leaf Leaf))
, testCase "Triage test Leaf" $ do
library <- evaluateFile "./lib/base.tri"
let input = "test t"
env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Leaf\""
, testCase "Triage test (Stem Leaf)" $ do
library <- evaluateFile "./lib/base.tri"
let input = "test (t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Stem\""
, testCase "Triage test (Fork Leaf Leaf)" $ do
library <- evaluateFile "./lib/base.tri"
let input = "test (t t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Fork\""
, testCase "Boolean NOT: true" $ do
library <- evaluateFile "./lib/base.tri"
let input = "not? true"
env = result $ evalTricu library (parseTricu input)
env @?= Leaf
, testCase "Boolean NOT: false" $ do
library <- evaluateFile "./lib/base.tri"
let input = "not? false"
env = result $ evalTricu library (parseTricu input)
env @?= Stem Leaf
, testCase "Boolean AND TF" $ do
library <- evaluateFile "./lib/base.tri"
let input = "and? (t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "Boolean AND FT" $ do
library <- evaluateFile "./lib/base.tri"
let input = "and? (t) (t t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "Boolean AND FF" $ do
library <- evaluateFile "./lib/base.tri"
let input = "and? (t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "Boolean AND TT" $ do
library <- evaluateFile "./lib/base.tri"
let input = "and? (t t) (t t)"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "List head" $ do
library <- evaluateFile "./lib/base.tri"
let input = "head [(t) (t t) (t t t)]"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "List tail" $ do
library <- evaluateFile "./lib/base.tri"
let input = "head (tail (tail [(t) (t t) (t t t)]))"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf
, testCase "List map" $ do
library <- evaluateFile "./lib/base.tri"
let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf
, testCase "Empty list check" $ do
library <- evaluateFile "./lib/base.tri"
let input = "emptyList? []"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "Non-empty list check" $ do
library <- evaluateFile "./lib/base.tri"
let input = "not? (emptyList? [(1) (2) (3)])"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "Concatenate strings" $ do
library <- evaluateFile "./lib/base.tri"
let input = "lconcat \"Hello, \" \"world!\""
env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Hello, world!\""
, testCase "Verifying Equality" $ do
library <- evaluateFile "./lib/base.tri"
let input = "equal? (t t t) (t t t)"
@ -393,19 +477,43 @@ libraryTests = testGroup "Library Tests"
result env @?= Stem Leaf
]
fileEvaluationTests :: TestTree
fileEvaluationTests = testGroup "Evaluation tests"
fileEval :: TestTree
fileEval = testGroup "File evaluation tests"
[ testCase "Forks" $ do
res <- liftIO $ evaluateFileResult "./test/fork.tri"
res @?= Fork Leaf Leaf
, testCase "File ends with comment" $ do
res <- liftIO $ evaluateFileResult "./test/comments-1.tri"
res @?= Fork (Stem Leaf) Leaf
, testCase "Mapping and Equality" $ do
res <- liftIO $ evaluateFileResult "./test/map.tri"
res @?= Stem Leaf
, testCase "Eval and decoding string" $ do
library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./test/string.tri"
decodeResult (result res) @?= "\"String test!\""
]
demos :: TestTree
demos = testGroup "Test provided demo functionality"
[ testCase "Structural equality demo" $ do
library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./demos/equality.tri"
decodeResult (result res) @?= "t t"
, testCase "Convert values back to source code demo" $ do
library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./demos/toSource.tri"
decodeResult (result res) @?= "\"(t (t (t t) (t t t)) (t t (t t t)))\""
, testCase "Determining the size of functions" $ do
library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./demos/size.tri"
decodeResult (result res) @?= "2071"
, testCase "Level Order Traversal demo" $ do
library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./demos/levelOrderTraversal.tri"
decodeResult (result res) @?= "\"\n1 \n2 3 \n4 5 6 7 \n8 11 10 9 12 \""
]