50 Commits

Author SHA1 Message Date
2bd388c871 Eval optimization! Tests for demos
All checks were successful
Test, Build, and Release / test (push) Successful in 1m30s
Test, Build, and Release / build (push) Successful in 1m26s
2025-01-25 09:18:13 -06:00
1f5a910fb2 Immutable definitions and documentation updates
All checks were successful
Test, Build, and Release / test (push) Successful in 1m22s
Test, Build, and Release / build (push) Successful in 1m23s
2025-01-24 16:14:33 -06:00
8b043911ca Add size demo 2025-01-23 18:57:59 -06:00
2e246eb1c8 Remove Nix caching that can't work due to /nix/store permissions
All checks were successful
Test, Build, and Release / test (push) Successful in 1m13s
Test, Build, and Release / build (push) Successful in 1m23s
2025-01-23 17:59:47 -06:00
ba340ae56f Update README to reflect demo
Some checks failed
Test, Build, and Release / build (push) Has been cancelled
Test, Build, and Release / test (push) Has been cancelled
2025-01-23 17:36:39 -06:00
739851c864 Minify and mark as pre-release
Some checks failed
Test, Build, and Release / test (push) Successful in 1m59s
Test, Build, and Release / build (push) Failing after 2m12s
2025-01-23 17:23:02 -06:00
8995efce15 Release 0.6.0
All checks were successful
Test, Build, and Release / test (push) Successful in 1m38s
Test, Build, and Release / build (push) Successful in 1m40s
2025-01-23 16:44:14 -06:00
03e2f6b93e Some special characters in ids; new demos
All checks were successful
Test and Build / test (push) Successful in 4m39s
Test and Build / build (push) Successful in 1m44s
Adds support for several special characters in identifiers. Adds a demo
for converting values to source code and another for checking equality.
Updates the existing demo and tests to reflect new names for functions
returning booleans.
2025-01-23 15:46:40 -06:00
419d66b4d1 All paths for caching cabal included :)
All checks were successful
Test and Build / test (push) Successful in 4m36s
Test and Build / build (push) Successful in 1m41s
2025-01-21 17:00:20 -06:00
4b98afd803 Use runner 0.1.0
All checks were successful
Test and Build / test (push) Successful in 2m52s
Test and Build / build (push) Successful in 1m42s
2025-01-21 16:49:15 -06:00
0768e11a02 Update Cabal caching path
Some checks failed
Test and Build / build (push) Has been cancelled
Test and Build / test (push) Has been cancelled
2025-01-21 16:48:29 -06:00
42fce0ae43 Drop unreachable cases of updateDepth
All checks were successful
Test and Build / test (push) Successful in 2m27s
Test and Build / build (push) Successful in 1m39s
2025-01-21 16:16:04 -06:00
51b1eb070f Add more explicit error handling for mismatched groupings 2025-01-21 16:06:10 -06:00
c2e5a8985a Inline pattern matching in Parser 2025-01-21 14:21:47 -06:00
9d7e4daa41 CI/CD for tests and builds (broken caching)
All checks were successful
Test and Build / test (push) Successful in 2m35s
Test and Build / build (push) Successful in 1m39s
2025-01-21 13:29:52 -06:00
edde0a80c9 Actually readable Level Order Traversal 2025-01-20 20:10:14 -06:00
35163a5d54 Allow multiline expressions 2025-01-20 19:20:29 -06:00
ca7f09e2ac Eliminate redundant eager calls of elimLambda 2025-01-20 16:05:06 -06:00
82e29440b0 Reduce duplication of elimLambda calls 2025-01-20 15:16:27 -06:00
ad02c8b86a General refactor for legibility
Priming to update all source to lhs and document extensively
2025-01-19 14:41:25 -06:00
a3282b794f 0.5.0 release commit 2025-01-06 09:14:04 -06:00
7b9a62462c Level Order Traversal demo 2025-01-03 12:00:06 -06:00
3eb28a2c62 Drop parseVarWithoutAssignment
Additionally sorts gitignore and adds attempted decoding of lists back
to the REPL
2025-01-03 10:31:35 -06:00
8c33e5ce66 Fix critical list evaluation bug and REPL updates 2025-01-02 19:08:14 -06:00
76487b15f9 Use better default output form in evaluator 2025-01-01 19:40:12 -06:00
18ff2d2e04 Clarify CLI options 2025-01-01 19:32:41 -06:00
fff29199d1 Support evaluation across multiple source files 2025-01-01 19:27:04 -06:00
a2c459b148 Provide "library" via tricu file directly
Allows easier loading of other files and drops the list of Haskell
strings containing the basic tools included
2025-01-01 18:53:56 -06:00
39be66a4d1 Fixes identifier lexing; support REPL file loading 2025-01-01 18:05:21 -06:00
bf58c9afbd Normalize CLI options and help display 2025-01-01 08:34:17 -06:00
7d38d99dcd Rename "compiler" functionality to Evaluator
Allows for stdin input for evaluation when no input file is provided.
2025-01-01 08:23:53 -06:00
458d3c3b10 Latest --help in README 2024-12-31 10:09:36 -06:00
0048fed6b4 Merge pull request 'Add "SimpleT" t output form' (#9) from feat/new-outputs into main
Reviewed-on: #9
2024-12-31 16:05:38 +00:00
476c3912a4 Merge branch 'main' into feat/new-outputs 2024-12-31 16:04:32 +00:00
493ef51a6a Add "SimpleT" t output form
This new output form allows easy piping to the decode function of the
tricu executable. Includes a new test for roundtrip evaluation of map,
compilation to tree calculus terms, and decoding back to a human
readable string.
2024-12-31 10:00:52 -06:00
e22ff06bfe Merge pull request 'Expands CLI support with output forms and decoding' (#7) from feat/ternary-representation into main
Reviewed-on: #7
2024-12-30 20:24:27 +00:00
5e2a4dff50 Expands CLI support with output forms and decoding
Adds CLI options for compiling to a Tree Calculus, AST, Ternary, and
ASCII tree view. Adds CLI command for attempted decoding of a compiled
result to Number/String/List.
2024-12-30 14:22:37 -06:00
8622af9ad2 Initial ternary representation options
Both parsing and conversion from T to ternary representation supported
2024-12-30 08:30:40 -06:00
fe70aa72ac Merge pull request 'Adds "compiler" and CLI argument handling' (#3) from feature/compiler-CLI into main
Reviewed-on: #3
2024-12-30 03:51:59 +00:00
2abeab9c04 Adds "compiler" and CLI argument handling 2024-12-29 21:49:57 -06:00
467e11edb3 Updates to tests
Uncomments a test for comment parsing behavior and removes a test for
incomplete function definitions.
2024-12-29 21:09:02 -06:00
38509724b1 Merge pull request 'Resolves issue with parsing comments' (#2) from fix/comments-0001 into main
Reviewed-on: #2
2024-12-30 03:03:39 +00:00
a8f72290a2 Resolves issue with parsing comments 2024-12-29 21:02:38 -06:00
b86ff6e9b8 Additional tests 2024-12-29 12:22:24 -06:00
a7674d4635 README updates for run/build 2024-12-29 10:41:04 -06:00
14fdb741dc README clarifications 2024-12-29 10:37:37 -06:00
60a9e3c1ee Expansion of testing suite to cover incl. library
Expands the testing suite to verify behavior of provided library
functions. Updates the README further for clarification on important
concepts.
2024-12-29 10:28:32 -06:00
c30f17367f Rename from sapling to tricu 2024-12-29 08:29:25 -06:00
064bed26c5 Further README clarification 2024-12-28 22:20:43 -06:00
ff2952010f README updates 2024-12-28 21:58:52 -06:00
26 changed files with 1410 additions and 711 deletions

View File

@ -0,0 +1,69 @@
name: Test, Build, and Release
on:
push:
tags:
- '*'
jobs:
test:
container:
image: docker.matri.cx/nix-runner:v0.1.0
credentials:
username: ${{ secrets.REGISTRY_USERNAME }}
password: ${{ secrets.REGISTRY_PASSWORD }}
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Set up cache for Cabal
uses: actions/cache@v4
with:
path: |
~/.cache/cabal
~/.config/cabal
~/.local/state/cabal
key: cabal-${{ hashFiles('tricu.cabal') }}
restore-keys: |
cabal-
- name: Initialize Cabal and update package list
run: |
nix develop --command cabal update
- name: Run test suite
run: |
nix develop --command cabal test
build:
needs: test
container:
image: docker.matri.cx/nix-runner:v0.1.0
credentials:
username: ${{ secrets.REGISTRY_USERNAME }}
password: ${{ secrets.REGISTRY_PASSWORD }}
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Build and shrink binary
run: |
nix build
cp -L ./result/bin/tricu ./tricu
chmod 755 ./tricu
nix develop --command upx ./tricu
- name: Setup go for release action
uses: actions/setup-go@v5
with:
go-version: '>=1.20.1'
- name: Release binary
uses: https://gitea.com/actions/release-action@main
with:
files: |-
./tricu
api_key: '${{ secrets.RELEASE_TOKEN }}'
pre_release: true

17
.gitignore vendored
View File

@ -1,14 +1,11 @@
bin/
data/Purr.sqlite
data/encryptionKey
/result
/config.dhall
/Dockerfile
/docker-stack.yml
.stack-work/
*.swp *.swp
dist* *.txt
*~ *~
.env .env
.stack-work/
/Dockerfile
/config.dhall
/result
WD WD
*.hs.txt bin/
dist*

104
README.md
View File

@ -1,54 +1,88 @@
# sapling # tricu
## Introduction ## Introduction
sapling is a "micro-language" that I'm working on to investigate [Tree Calculus](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf) . tricu (pronounced "tree-shoe") is a purely functional interpreted language implemented in Haskell. It is fundamentally based on the application of [Tree Calculus](https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf) terms, but minimal syntax sugar is included to provide a useful programming tool.
It offers a minimal amount of syntax sugar: tricu is the word for "tree" in Lojban: `(x1) is a tree of species/cultivar (x2)`.
- `t` operator behaving by the rules of Tree Calculus ## Features
- Function ("variable") definitions
- Lambda abstractions
- List, Number, and String literals (WIP)
This is an active experimentation project by [someone who has no idea what they're doing](https://eversole.co). - Tree Calculus operator: `t`
- Assignments: `x = t t`
- Lambda abstraction syntax: `id = (\a : a)`
- List, Number, and String literals: `[(2) ("Hello")]`
- Function application: `not (not false)`
- Higher order/first-class functions: `map (\a : lconcat a "!") [("Hello")]`
- Intensionality blurs the distinction between functions and data (see REPL examples)
- Immutability
## What does it look like? ## REPL examples
``` ```
false = t tricu < -- Anything after `--` on a single line is a comment
_ = t tricu < id = (\a : a) -- Lambda abstraction is eliminated to tree calculus terms
true = t t tricu < head (map (\i : lconcat i " world!") [("Hello, ")])
id = (\a : a) tricu > "Hello, world!"
triage = (\a b c : t (t a b) c) tricu < id (head (map (\i : lconcat i " world!") [("Hello, ")]))
match_bool = (\ot of : triage of (\_ : ot) t) tricu > "Hello, world!"
and = match_bool id (\_ : false)
if = (\cond then else : t (t else (t t then)) t cond)
triage = (\a b c : t (t a b) c)
test = triage "leaf" (\_ : "stem") (\_ _ : "fork")
-- The REPL outputs the tree form results by default; they are elided here. tricu < -- Intensionality! We can inspect the structure of a function or data.
sapling < test t tricu < triage = (\a b c : t (t a b) c)
DECODE -: "leaf" tricu < test = triage "Leaf" (\z : "Stem") (\a b : "Fork")
sapling < test (t t) tricu < test (t t)
DECODE -: "stem" tricu > "Stem"
sapling < test (t t t) tricu < -- We can even convert a term back to source code (/demos/toSource.tri)
DECODE -: "fork" tricu < toSource not?
sapling < map (\i : listConcat i " is super cool!") [("He") ("She") ("Everybody")] tricu > "(t (t (t t) (t t t)) (t t (t t t)))"
DECODE -: ["He is super cool!", "She is super cool!", "Everybody is super cool!"] tricu < -- or calculate its size (/demos/size.tri)
tricu < size not?
tricu > 12
``` ```
## How to use ## Installation and Use
For now, you can easily build and run this project using Nix: [Releases are available for Linux.](https://git.eversole.co/James/tricu/releases)
1. Clone the repository: Or you can easily build and/or run this project using [Nix](https://nixos.org/download/).
a. `git clone ssh://git.eversole.co/sapling.git`
b. `git clone https://git.eversole/sapling.git` - Quick Start (REPL):
1. Run the REPL: `nix run` - `nix run git+https://git.eversole.co/James/tricu`
- Build executable in `./result/bin`:
- `nix build git+https://git.eversole.co/James/tricu`
`./result/bin/tricu --help`
```
tricu Evaluator and REPL
tricu [COMMAND] ... [OPTIONS]
tricu: Exploring Tree Calculus
Common flags:
-? --help Display help message
-V --version Print version information
tricu [repl] [OPTIONS]
Start interactive REPL
tricu eval [OPTIONS]
Evaluate tricu and return the result of the final expression.
-f --file=FILE Input file path(s) for evaluation.
Defaults to stdin.
-t --form=FORM Optional output form: (tree|fsl|ast|ternary|ascii).
Defaults to tricu-compatible `t` tree form.
tricu decode [OPTIONS]
Decode a Tree Calculus value into a string representation.
-f --file=FILE Optional input file path to attempt decoding.
Defaults to stdin.
```
## Acknowledgements ## Acknowledgements
Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog). Tree Calculus was discovered by [Barry Jay](https://github.com/barry-jay-personal/blog).
[treecalcul.us](https://treecalcul.us) is an excellent website with an intuitive playground created by [Johannes Bader](https://johannes-bader.com/) that introduced me to Tree Calculus. If sapling sounds interesting but compiling this repo sounds like a hassle, you should check out his site. [treecalcul.us](https://treecalcul.us) is an excellent website with an intuitive Tree Calculus code playground created by [Johannes Bader](https://johannes-bader.com/) that introduced me to Tree Calculus.

35
demos/equality.tri Normal file
View File

@ -0,0 +1,35 @@
-- We represent `false` with a Leaf and `true` with a Stem Leaf
demo_false = t
demo_true = t t
-- Tree Calculus representation of the Boolean `not` function
not_TC? = t (t (t t) (t t t)) (t t (t t t))
-- /demos/toSource.tri contains an explanation of `triage`
demo_triage = (\a b c : t (t a b) c)
demo_matchBool = (\ot of : demo_triage
of
(\_ : ot)
(\_ _ : ot)
)
-- Lambda representation of the Boolean `not` function
not_Lambda? = demo_matchBool demo_false demo_true
-- Since tricu eliminates Lambda terms to SKI combinators, the tree form of many
-- functions defined via Lambda terms are larger than the most efficient TC
-- representation. Between different languages that evaluate to tree calculus
-- terms, the exact implementation of Lambda elimination may differ and lead
-- to different tree representations even if they share extensional behavior.
-- Let's see if these are the same:
lambdaEqualsTC = equal? not_TC? not_Lambda?
-- Here are some checks to verify their extensional behavior is the same:
true_TC? = not_TC? demo_false
false_TC? = not_TC? demo_true
true_Lambda? = not_Lambda? demo_false
false_Lambda? = not_Lambda? demo_true
bothTrueEqual? = equal? true_TC? true_Lambda?
bothFalseEqual? = equal? false_TC? false_Lambda?

View File

@ -0,0 +1,65 @@
-- Level Order Traversal of a labelled binary tree
-- Objective: Print each "level" of the tree on a separate line
--
-- NOTICE: This demo relies on tricu base library functions
--
-- We model labelled binary trees as sublists where values act as labels. We
-- require explicit not?ation of empty nodes. Empty nodes can be represented
-- with an empty list, `[]`, which is equivalent to a single node `t`.
--
-- Example tree inputs:
-- [("1") [("2") [("4") t t] t] [("3") [("5") t t] [("6") t t]]]]
-- Graph:
-- 1
-- / \
-- 2 3
-- / / \
-- 4 5 6
--
label = (\node : head node)
left = (\node : if (emptyList? node)
[]
(if (emptyList? (tail node))
[]
(head (tail node))))
right = (\node : if (emptyList? node)
[]
(if (emptyList? (tail node))
[]
(if (emptyList? (tail (tail node)))
[]
(head (tail (tail node))))))
processLevel = y (\self queue : if (emptyList? queue)
[]
(pair (map label queue) (self (filter
(\node : not? (emptyList? node))
(lconcat (map left queue) (map right queue))))))
levelOrderTraversal_ = (\a : processLevel (t a t))
toLineString = y (\self levels : if (emptyList? levels)
""
(lconcat
(lconcat (map (\x : lconcat x " ") (head levels)) "")
(if (emptyList? (tail levels)) "" (lconcat (t (t 10 t) t) (self (tail levels))))))
levelOrderToString = (\s : toLineString (levelOrderTraversal_ s))
flatten = foldl (\acc x : lconcat acc x) ""
levelOrderTraversal = (\s : lconcat (t 10 t) (flatten (levelOrderToString s)))
exampleOne = levelOrderTraversal [("1")
[("2") [("4") t t] t]
[("3") [("5") t t] [("6") t t]]]
exampleTwo = levelOrderTraversal [("1")
[("2") [("4") [("8") t t] [("9") t t]]
[("6") [("10") t t] [("12") t t]]]
[("3") [("5") [("11") t t] t] [("7") t t]]]
exampleTwo

21
demos/size.tri Normal file
View File

@ -0,0 +1,21 @@
compose = (\f g x : f (g x))
succ = y (\self :
triage
1
t
(triage
(t (t t))
(\_ tail : t t (self tail))
t))
size = (\x :
(y (\self x :
compose succ
(triage
(\x : x)
self
(\x y : compose (self x) (self y))
x)) x 0))
size size

46
demos/toSource.tri Normal file
View File

@ -0,0 +1,46 @@
-- Thanks to intensionality, we can inspect the structure of a given value
-- even if it's a function. This includes lambdas which are eliminated to
-- Tree Calculus (TC) terms during evaluation.
-- `triage` takes four arguments: the first three represent behaviors for each
-- structural case in Tree Calculus (Leaf, Stem, and Fork).
-- The fourth argument is the value whose structure is inspected. By evaluating
-- the Tree Calculus term, `triage` enables branching logic based on the term's
-- shape, making it possible to perform structure-specific operations such as
-- reconstructing the terms' source code representation.
-- triage = (\leaf stem fork : t (t leaf stem) fork)
-- Base case of a single Leaf
sourceLeaf = t (head "t")
-- Stem case
sourceStem = (\convert : (\a rest :
t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t"
(t (head " ") -- Add a space.
(convert a -- Recursively convert the argument.
(t (head ")") rest)))))) -- Close with ")" and append the rest.
-- Fork case
sourceFork = (\convert : (\a b rest :
t (head "(") -- Start with a left parenthesis "(".
(t (head "t") -- Add a "t"
(t (head " ") -- Add a space.
(convert a -- Recursively convert the first arg.
(t (head " ") -- Add another space.
(convert b -- Recursively convert the second arg.
(t (head ")") rest)))))))) -- Close with ")" and append the rest.
-- Wrapper around triage
toSource_ = y (\self arg :
triage
sourceLeaf -- `triage` "a" case, Leaf
(sourceStem self) -- `triage` "b" case, Stem
(sourceFork self) -- `triage` "c" case, Fork
arg) -- The term to be inspected
-- toSource takes a single TC term and returns a String
toSource = (\v : toSource_ v "")
exampleOne = toSource true -- OUT: "(t t)"
exampleTwo = toSource not? -- OUT: "(t (t (t t) (t t t)) (t t (t t t)))"

View File

@ -1,5 +1,5 @@
{ {
description = "sapling"; description = "tricu";
inputs = { inputs = {
nixpkgs.url = "github:NixOS/nixpkgs"; nixpkgs.url = "github:NixOS/nixpkgs";
@ -10,7 +10,7 @@
flake-utils.lib.eachDefaultSystem (system: flake-utils.lib.eachDefaultSystem (system:
let let
pkgs = nixpkgs.legacyPackages.${system}; pkgs = nixpkgs.legacyPackages.${system};
packageName = "sapling"; packageName = "tricu";
containerPackageName = "${packageName}-container"; containerPackageName = "${packageName}-container";
customGHC = pkgs.haskellPackages.ghcWithPackages (hpkgs: with hpkgs; [ customGHC = pkgs.haskellPackages.ghcWithPackages (hpkgs: with hpkgs; [
@ -22,7 +22,7 @@
enableSharedExecutables = false; enableSharedExecutables = false;
enableSharedLibraries = false; enableSharedLibraries = false;
sapling = pkgs.haskell.lib.justStaticExecutables self.packages.${system}.default; tricu = pkgs.haskell.lib.justStaticExecutables self.packages.${system}.default;
in { in {
packages.${packageName} = packages.${packageName} =
@ -32,10 +32,11 @@
defaultPackage = self.packages.${system}.default; defaultPackage = self.packages.${system}.default;
devShells.default = pkgs.mkShell { devShells.default = pkgs.mkShell {
buildInputs = with pkgs.haskellPackages; [ buildInputs = with pkgs; [
cabal-install haskellPackages.cabal-install
ghcid haskellPackages.ghcid
customGHC customGHC
upx
]; ];
inputsFrom = builtins.attrValues self.packages.${system}; inputsFrom = builtins.attrValues self.packages.${system};
}; };

96
lib/base.tri Normal file
View File

@ -0,0 +1,96 @@
false = t
_ = t
true = t t
k = t t
i = t (t k) t
s = t (t (k t)) t
m = s i i
b = s (k s) k
c = s (s (k s) (s (k k) s)) (k k)
iC = (\a b c : s a (k c) b)
iD = b (b iC) iC
iE = b (b iD) iC
yi = (\i : b m (c b (i m)))
y = yi iC
yC = yi iD
yD = yi iE
id = (\a : a)
pair = t
if = (\cond then else : t (t else (t t then)) t cond)
triage = (\leaf stem fork : t (t leaf stem) fork)
test = triage "Leaf" (\_ : "Stem") (\_ _ : "Fork")
matchBool = (\ot of : triage
of
(\_ : ot)
(\_ _ : ot)
)
matchList = (\oe oc : triage
oe
_
oc
)
matchPair = (\op : triage
_
_
op
)
not? = matchBool false true
and? = matchBool id (\_ : false)
emptyList? = matchList true (\_ _ : false)
head = matchList t (\head _ : head)
tail = matchList t (\_ tail : tail)
lconcat = y (\self : matchList
(\k : k)
(\h r k : pair h (self r k)))
lAnd = (triage
(\_ : false)
(\_ x : x)
(\_ _ x : x)
)
lOr = (triage
(\x : x)
(\_ _ : true)
(\_ _ _ : true)
)
map_ = y (\self :
matchList
(\_ : t)
(\head tail f : pair (f head) (self tail f)))
map = (\f l : map_ l f)
equal? = y (\self : triage
(triage
true
(\_ : false)
(\_ _ : false))
(\ax :
triage
false
(self ax)
(\_ _ : false))
(\ax ay :
triage
false
(\_ : false)
(\bx by : lAnd (self ax bx) (self ay by))))
filter_ = y (\self : matchList
(\_ : t)
(\head tail f : matchBool (t head) i (f head) (self tail f)))
filter = (\f l : filter_ l f)
foldl_ = y (\self f l x : matchList (\acc : acc) (\head tail acc : self f tail (f acc head)) l x)
foldl = (\f x l : foldl_ f l x)
foldr_ = y (\self x f l : matchList x (\head tail : f (self x f tail) head) l)
foldr = (\f x l : foldr_ x f l)

View File

@ -1,8 +0,0 @@
{ pkgs ? import <nixpkgs> {} }:
let x = pkgs.haskellPackages.ghcWithPackages (hpkgs: with hpkgs; [
megaparsec
]);
in
pkgs.mkShell {
buildInputs = [ x ];
}

View File

@ -3,118 +3,96 @@ module Eval where
import Parser import Parser
import Research import Research
import Data.Map (Map) import Data.Map (Map)
import qualified Data.Map as Map import qualified Data.Map as Map
import Data.List (foldl')
import qualified Data.Set as Set import qualified Data.Set as Set
evalSingle :: Map String T -> SaplingAST -> Map String T evalSingle :: Env -> TricuAST -> Env
evalSingle env term = case term of evalSingle env term
SFunc name [] body -> | SFunc name [] body <- term =
let lineNoLambda = eliminateLambda body if
result = evalAST env lineNoLambda | Map.member name env ->
in Map.insert name result env errorWithoutStackTrace $
SLambda _ body -> "Error: Identifier '" ++ name ++ "' is already defined."
let result = evalAST env body | otherwise ->
in Map.insert "__result" result env let res = evalAST env body
SApp func arg -> in Map.insert "__result" res (Map.insert name res env)
let result = apply (evalAST env $ eliminateLambda func) (evalAST env $ eliminateLambda arg) | SApp func arg <- term =
in Map.insert "__result" result env let res = apply (evalAST env func) (evalAST env arg)
SVar name -> in Map.insert "__result" res env
case Map.lookup name env of | SVar name <- term =
Just value -> Map.insert "__result" value env case Map.lookup name env of
Nothing -> error $ "Variable " ++ name ++ " not defined" Just v -> Map.insert "__result" v env
_ -> Nothing -> errorWithoutStackTrace $ "Variable `" ++ name ++ "` not defined"
let result = evalAST env term | otherwise =
in Map.insert "__result" result env Map.insert "__result" (evalAST env term) env
evalSapling :: Map String T -> [SaplingAST] -> Map String T evalTricu :: Env -> [TricuAST] -> Env
evalSapling env [] = env evalTricu env [] = env
evalSapling env [lastLine] = evalTricu env [x] =
let lastLineNoLambda = eliminateLambda lastLine let updatedEnv = evalSingle env x
updatedEnv = evalSingle env lastLineNoLambda in Map.insert "__result" (result updatedEnv) updatedEnv
in Map.insert "__result" (result updatedEnv) updatedEnv evalTricu env (x:xs) =
evalSapling env (line:rest) = evalTricu (evalSingle env x) xs
let lineNoLambda = eliminateLambda line
updatedEnv = evalSingle env lineNoLambda
in evalSapling updatedEnv rest
evalAST :: Map String T -> SaplingAST -> T evalAST :: Env -> TricuAST -> T
evalAST env term = case term of evalAST env term
SVar name -> case Map.lookup name env of | SLambda _ _ <- term = evalAST env (elimLambda term)
Just value -> value | SVar name <- term = evalVar name
Nothing -> error $ "Variable " ++ name ++ " not defined" | TLeaf <- term = Leaf
TLeaf -> Leaf | TStem t <- term = Stem (evalAST env t)
TStem t -> Stem (evalAST env t) | TFork t u <- term = Fork (evalAST env t) (evalAST env u)
TFork t1 t2 -> Fork (evalAST env t1) (evalAST env t2) | SApp t u <- term = apply (evalAST env t) (evalAST env u)
SApp t1 t2 -> apply (evalAST env t1) (evalAST env t2) | SStr s <- term = ofString s
SStr str -> ofString str | SInt n <- term = ofNumber n
SInt num -> ofNumber num | SList xs <- term = ofList (map (evalAST env) xs)
SList elems -> ofList (map (evalAST Map.empty) elems) | SEmpty <- term = Leaf
SFunc name args body -> | otherwise = errorWithoutStackTrace "Unexpected AST term"
error $ "Unexpected function definition " ++ name where
++ " in evalAST; define via evalSingle." evalVar name = Map.findWithDefault
SLambda {} -> error "Internal error: SLambda found in evalAST after elimination." (errorWithoutStackTrace $ "Variable " ++ name ++ " not defined")
name env
eliminateLambda :: SaplingAST -> SaplingAST
eliminateLambda (SLambda (v:vs) body)
| null vs = lambdaToT v (eliminateLambda body)
| otherwise = eliminateLambda (SLambda [v] (SLambda vs body))
eliminateLambda (SApp f arg) = SApp (eliminateLambda f) (eliminateLambda arg)
eliminateLambda (TStem t) = TStem (eliminateLambda t)
eliminateLambda (TFork l r) = TFork (eliminateLambda l) (eliminateLambda r)
eliminateLambda (SList xs) = SList (map eliminateLambda xs)
eliminateLambda other = other
-- This is my attempt to implement the lambda calculus elimination rules defined
-- in "Typed Program Analysis without Encodings" by Barry Jay.
-- https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf -- https://github.com/barry-jay-personal/typed_tree_calculus/blob/main/typed_program_analysis.pdf
lambdaToT :: String -> SaplingAST -> SaplingAST -- Chapter 4: Lambda-Abstraction
lambdaToT x (SVar y) elimLambda :: TricuAST -> TricuAST
| x == y = tI elimLambda = go
lambdaToT x (SVar y) where
| x /= y = SApp tK (SVar y) go (SLambda [v] (SApp f (SVar x)))
lambdaToT x t | v == x && not (isFree v f) = elimLambda f
| not (isFree x t) = SApp tK t go (SLambda (v:vs) body)
lambdaToT x (SApp n u) | null vs = toSKI v (elimLambda body)
| not (isFree x (SApp n u)) = SApp tK (SApp (eliminateLambda n) (eliminateLambda u)) | otherwise = elimLambda (SLambda [v] (SLambda vs body))
lambdaToT x (SApp n u) = SApp (SApp tS (lambdaToT x (eliminateLambda n))) (lambdaToT x (eliminateLambda u)) go (SApp f g) = SApp (elimLambda f) (elimLambda g)
lambdaToT x body go x = x
| not (isFree x body) = SApp tK body
| otherwise = SApp (SApp tS (lambdaToT x body)) TLeaf
freeVars :: SaplingAST -> Set.Set String toSKI x (SVar y)
freeVars (SVar v) = Set.singleton v | x == y = _I
freeVars (SInt _) = Set.empty | otherwise = SApp _K (SVar y)
freeVars (SStr _) = Set.empty toSKI x t@(SApp n u)
freeVars (SList xs) = foldMap freeVars xs | not (isFree x t) = SApp _K t
freeVars (SApp f arg) = freeVars f <> freeVars arg | otherwise = SApp (SApp _S (toSKI x n)) (toSKI x u)
freeVars TLeaf = Set.empty toSKI x t
freeVars (SFunc _ _ b) = freeVars b | not (isFree x t) = SApp _K t
freeVars (TStem t) = freeVars t
freeVars (TFork l r) = freeVars l <> freeVars r
freeVars (SLambda vs b) = foldr Set.delete (freeVars b) vs
isFree :: String -> SaplingAST -> Bool _S = parseSingle "t (t (t t t)) t"
isFree x = Set.member x . freeVars _K = parseSingle "t t"
_I = parseSingle "t (t (t t)) t"
isFree x = Set.member x . freeVars
freeVars (SVar v ) = Set.singleton v
freeVars (SInt _ ) = Set.empty
freeVars (SStr _ ) = Set.empty
freeVars (SList s ) = foldMap freeVars s
freeVars (SApp f a ) = freeVars f <> freeVars a
freeVars (TLeaf ) = Set.empty
freeVars (SFunc _ _ b) = freeVars b
freeVars (TStem t ) = freeVars t
freeVars (TFork l r ) = freeVars l <> freeVars r
freeVars (SLambda v b ) = foldr Set.delete (freeVars b) v
toAST :: T -> SaplingAST result :: Env -> T
toAST Leaf = TLeaf
toAST (Stem a) = TStem (toAST a)
toAST (Fork a b) = TFork (toAST a) (toAST b)
-- We need the SKI operators in an unevaluated SaplingAST tree form so that we
-- can keep the evaluation functions straightforward
tI :: SaplingAST
tI = SApp (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))) TLeaf
tK :: SaplingAST
tK = SApp TLeaf TLeaf
tS :: SaplingAST
tS = SApp (SApp TLeaf (SApp TLeaf (SApp (SApp TLeaf TLeaf) TLeaf))) TLeaf
result :: Map String T -> T
result r = case Map.lookup "__result" r of result r = case Map.lookup "__result" r of
Just a -> a Just a -> a
Nothing -> error "No __result field found in provided environment" Nothing -> errorWithoutStackTrace "No __result field found in provided environment"

30
src/FileEval.hs Normal file
View File

@ -0,0 +1,30 @@
module FileEval where
import Eval
import Parser
import Research
import System.IO
import qualified Data.Map as Map
evaluateFileResult :: FilePath -> IO T
evaluateFileResult filePath = do
contents <- readFile filePath
let asts = parseTricu contents
let finalEnv = evalTricu Map.empty asts
case Map.lookup "__result" finalEnv of
Just finalResult -> return finalResult
Nothing -> errorWithoutStackTrace "No expressions to evaluate found"
evaluateFile :: FilePath -> IO Env
evaluateFile filePath = do
contents <- readFile filePath
let asts = parseTricu contents
pure $ evalTricu Map.empty asts
evaluateFileWithContext :: Env -> FilePath -> IO Env
evaluateFileWithContext env filePath = do
contents <- readFile filePath
let asts = parseTricu contents
pure $ evalTricu env asts

View File

@ -1,37 +1,28 @@
module Lexer where module Lexer where
import Research import Research
import Text.Megaparsec
import Text.Megaparsec.Char
import Control.Monad (void) import Control.Monad (void)
import Data.Void import Data.Void
import Text.Megaparsec
import Text.Megaparsec.Char hiding (space)
import Text.Megaparsec.Char.Lexer
import qualified Data.Set as Set import qualified Data.Set as Set
type Lexer = Parsec Void String type Lexer = Parsec Void String
data LToken
= LKeywordT
| LIdentifier String
| LIntegerLiteral Int
| LStringLiteral String
| LAssign
| LColon
| LBackslash
| LOpenParen
| LCloseParen
| LOpenBracket
| LCloseBracket
| LNewline
| LComment String
deriving (Show, Eq, Ord)
keywordT :: Lexer LToken keywordT :: Lexer LToken
keywordT = string "t" *> notFollowedBy alphaNumChar *> pure LKeywordT keywordT = string "t" *> notFollowedBy alphaNumChar *> pure LKeywordT
identifier :: Lexer LToken identifier :: Lexer LToken
identifier = do identifier = do
name <- some (letterChar <|> char '_' <|> char '-') first <- letterChar <|> char '_'
rest <- many $ letterChar
<|> digitChar
<|> char '_' <|> char '-' <|> char '?' <|> char '!'
<|> char '$' <|> char '#' <|> char '@' <|> char '%'
let name = first : rest
if (name == "t" || name == "__result") if (name == "t" || name == "__result")
then fail "Keywords (`t`, `__result`) cannot be used as an identifier" then fail "Keywords (`t`, `__result`) cannot be used as an identifier"
else return (LIdentifier name) else return (LIdentifier name)
@ -45,11 +36,8 @@ stringLiteral :: Lexer LToken
stringLiteral = do stringLiteral = do
char '"' char '"'
content <- many (noneOf ['"']) content <- many (noneOf ['"'])
if null content char '"' --"
then fail "Empty string literals are not allowed" return (LStringLiteral content)
else do
char '"' --"
return (LStringLiteral content)
assign :: Lexer LToken assign :: Lexer LToken
assign = char '=' *> pure LAssign assign = char '=' *> pure LAssign
@ -75,34 +63,39 @@ closeBracket = char ']' *> pure LCloseBracket
lnewline :: Lexer LToken lnewline :: Lexer LToken
lnewline = char '\n' *> pure LNewline lnewline = char '\n' *> pure LNewline
comment :: Lexer LToken
comment = do
string "--"
content <- many (satisfy (/= '\n'))
optional (char '\n')
pure (LComment content)
sc :: Lexer () sc :: Lexer ()
sc = skipMany (void (char ' ') <|> void (char '\t') <|> void comment) sc = space
(void $ takeWhile1P (Just "space") (\c -> c == ' ' || c == '\t'))
(skipLineComment "--")
(skipBlockComment "|-" "-|")
saplingLexer :: Lexer [LToken] tricuLexer :: Lexer [LToken]
saplingLexer = many (sc *> choice tricuLexer = do
[ try identifier sc
, try keywordT tokens <- many $ do
, try integerLiteral tok <- choice tricuLexer'
, try stringLiteral sc
, assign pure tok
, colon sc
, backslash eof
, openParen pure tokens
, closeParen where
, openBracket tricuLexer' =
, closeBracket [ try lnewline
, lnewline , try identifier
] <* sc) <* eof , try keywordT
, try integerLiteral
, try stringLiteral
, assign
, colon
, backslash
, openParen
, closeParen
, openBracket
, closeBracket
]
lexSapling :: String -> [LToken] lexTricu :: String -> [LToken]
lexSapling input = case runParser saplingLexer "" input of lexTricu input = case runParser tricuLexer "" input of
Left err -> error $ "Lexical error:\n" ++ errorBundlePretty err Left err -> errorWithoutStackTrace $ "Lexical error:\n" ++ errorBundlePretty err
Right tokens -> tokens Right tokens -> tokens

View File

@ -1,47 +0,0 @@
module Library where
import Eval
import Parser
import Research
import qualified Data.Map as Map
library :: Map.Map String T
library = evalSapling Map.empty $ parseSapling $ unlines
[ "false = t"
, "true = t t"
, "_ = t"
, "k = t t"
, "i = t (t k) t"
, "s = t (t (k t)) t"
, "m = s i i"
, "b = s (k s) k"
, "c = s (s (k s) (s (k k) s)) (k k)"
, "iC = (\\a b c : s a (k c) b)"
, "iD = b (b iC) iC"
, "iE = b (b iD) iC"
, "yi = (\\i : b m (c b (i m)))"
, "y = yi iC"
, "yC = yi iD"
, "yD = yi iE"
, "id = (\\a : a)"
, "triage = (\\a b c : t (t a b) c)"
, "pair = t"
, "matchBool = (\\ot of : triage of (\\_ : ot) (\\_ _ : ot))"
, "matchList = (\\oe oc : triage oe _ oc)"
, "matchPair = (\\op : triage _ _ op)"
, "and = matchBool id (\\z : false)"
, "if = (\\cond then else : t (t else (t t then)) t cond)"
, "test = triage \"leaf\" (\\z : \"stem\") (\\a b : \"fork\")"
, "emptyList = matchList true (\\y z : false)"
, "nonEmptyList = matchList false (\\y z : true)"
, "head = matchList t (\\hd tl : hd)"
, "tail = matchList t (\\hd tl : tl)"
, "isLeaf = (\\_ : triage true false false)"
, "listConcat = y (\\self : matchList (\\k : k) (\\h r k : pair h (self r k)))"
, "lAnd = triage (\\x : false) (\\_ x : x) (\\_ _ x : x)"
, "lOr = triage (\\x : x) (\\_ _ : true) (\\_ _ x : true)"
, "hmap = y (\\self : matchList (\\f : t) (\\hd tl f : pair (f hd) (self tl f)))"
, "map = (\\f l : hmap l f)"
, "equal = y (\\self : triage (triage true (\\z : false) (\\y z : false)) (\\ax : triage false (self ax) (\\y z : false)) (\\ax ay : triage false (\\z : false) (\\bx by : lAnd (self ax bx) (self ay by))))"
]

View File

@ -1,22 +1,87 @@
module Main where module Main where
import Eval import Eval (evalTricu, result)
import Lexer import FileEval
import Library import Parser (parseTricu)
import Parser import REPL
import REPL (repl)
import Research import Research
import Control.Monad (foldM)
import Control.Monad.IO.Class (liftIO)
import Text.Megaparsec (runParser)
import System.Console.CmdArgs
import qualified Data.Map as Map import qualified Data.Map as Map
import Text.Megaparsec (runParser)
data TricuArgs
= Repl
| Evaluate { file :: [FilePath], form :: EvaluatedForm }
| Decode { file :: [FilePath] }
deriving (Show, Data, Typeable)
replMode :: TricuArgs
replMode = Repl
&= help "Start interactive REPL"
&= auto
&= name "repl"
evaluateMode :: TricuArgs
evaluateMode = Evaluate
{ file = def &= help "Input file path(s) for evaluation.\n \
\ Defaults to stdin."
&= name "f" &= typ "FILE"
, form = TreeCalculus &= typ "FORM"
&= help "Optional output form: (tree|fsl|ast|ternary|ascii).\n \
\ Defaults to tricu-compatible `t` tree form."
&= name "t"
}
&= help "Evaluate tricu and return the result of the final expression."
&= explicit
&= name "eval"
decodeMode :: TricuArgs
decodeMode = Decode
{ file = def
&= help "Optional input file path to attempt decoding.\n \
\ Defaults to stdin."
&= name "f" &= typ "FILE"
}
&= help "Decode a Tree Calculus value into a string representation."
&= explicit
&= name "decode"
main :: IO () main :: IO ()
main = do main = do
putStrLn "Welcome to the Sapling Interpreter" args <- cmdArgs $ modes [replMode, evaluateMode, decodeMode]
putStrLn "You can exit at any time by typing and entering: " &= help "tricu: Exploring Tree Calculus"
putStrLn ":_exit" &= program "tricu"
repl library &= summary "tricu Evaluator and REPL"
case args of
Repl -> do
putStrLn "Welcome to the tricu REPL"
putStrLn "You can exit with `CTRL+D` or the `:_exit` command.`"
library <- liftIO $ evaluateFile "./lib/base.tri"
repl $ Map.delete "__result" library
Evaluate { file = filePaths, form = form } -> do
result <- case filePaths of
[] -> do
t <- getContents
pure $ runTricu t
(filePath:restFilePaths) -> do
initialEnv <- evaluateFile filePath
finalEnv <- foldM evaluateFileWithContext initialEnv restFilePaths
pure $ result finalEnv
let fRes = formatResult form result
putStr fRes
Decode { file = filePaths } -> do
value <- case filePaths of
[] -> getContents
(filePath:_) -> readFile filePath
library <- liftIO $ evaluateFile "./lib/base.tri"
putStrLn $ decodeResult $ result $ evalTricu library $ parseTricu value
runSapling :: String -> T runTricu :: String -> T
runSapling s = result (evalSapling Map.empty $ parseSapling s) runTricu input =
runSaplingEnv env s = result (evalSapling env $ parseSapling s) let asts = parseTricu input
finalEnv = evalTricu Map.empty asts
in result finalEnv

View File

@ -1,255 +1,304 @@
module Parser where module Parser where
import Debug.Trace
import Lexer import Lexer
import Research hiding (toList) import Research
import Control.Exception (throw)
import Control.Monad (void)
import Control.Monad.State
import Data.List.NonEmpty (toList) import Data.List.NonEmpty (toList)
import qualified Data.Set as Set import Data.Void (Void)
import Data.Void
import Text.Megaparsec import Text.Megaparsec
import Text.Megaparsec.Char import Text.Megaparsec.Error (ParseErrorBundle, errorBundlePretty)
import Text.Megaparsec.Error (errorBundlePretty, ParseErrorBundle) import qualified Data.Set as Set
type Parser = Parsec Void [LToken] data PState = PState
{ parenDepth :: Int
, bracketDepth :: Int
} deriving (Show)
data SaplingAST type ParserM = StateT PState (Parsec Void [LToken])
= SVar String
| SInt Int
| SStr String
| SList [SaplingAST]
| SFunc String [String] SaplingAST
| SApp SaplingAST SaplingAST
| TLeaf
| TStem SaplingAST
| TFork SaplingAST SaplingAST
| SLambda [String] SaplingAST
deriving (Show, Eq, Ord)
parseSapling :: String -> [SaplingAST] satisfyM :: (LToken -> Bool) -> ParserM LToken
parseSapling input = satisfyM f = do
let nonEmptyLines = filter (not . null) (lines input) token <- lift (satisfy f)
in map parseSingle nonEmptyLines modify' (updateDepth token)
return token
parseSingle :: String -> SaplingAST updateDepth :: LToken -> PState -> PState
parseSingle input = case runParser parseExpression "" (lexSapling input) of updateDepth LOpenParen st = st { parenDepth = parenDepth st + 1 }
Left err -> error $ handleParseError err updateDepth LOpenBracket st = st { bracketDepth = bracketDepth st + 1 }
Right ast -> ast updateDepth LCloseParen st = st { parenDepth = parenDepth st - 1 }
updateDepth LCloseBracket st = st { bracketDepth = bracketDepth st - 1 }
updateDepth _ st = st
scnParser :: Parser () topLevelNewline :: ParserM ()
scnParser = skipMany (satisfy isNewline) topLevelNewline = do
st <- get
if parenDepth st == 0 && bracketDepth st == 0
then void (satisfyM (== LNewline))
else fail "Top-level exit in nested context (paren or bracket)"
parseExpression :: Parser SaplingAST parseProgram :: [LToken] -> Either (ParseErrorBundle [LToken] Void) [TricuAST]
parseExpression = choice parseProgram tokens =
[ try parseFunction runParser (evalStateT (parseProgramM <* finalizeDepth <* eof) (PState 0 0)) "" tokens
, try parseLambda
, try parseLambdaExpression parseSingleExpr :: [LToken] -> Either (ParseErrorBundle [LToken] Void) TricuAST
, try parseListLiteral parseSingleExpr tokens =
, try parseApplication runParser (evalStateT (scnParserM *> parseExpressionM <* finalizeDepth <* eof) (PState 0 0)) "" tokens
, try parseTreeTerm
, parseLiteral finalizeDepth :: ParserM ()
finalizeDepth = do
st <- get
case (parenDepth st, bracketDepth st) of
(0, 0) -> pure ()
(p, b) -> fail $ "Unmatched tokens: " ++ show (p, b)
parseTricu :: String -> [TricuAST]
parseTricu input =
case lexTricu input of
[] -> []
toks ->
case parseProgram toks of
Left err -> errorWithoutStackTrace (handleParseError err)
Right asts -> asts
parseSingle :: String -> TricuAST
parseSingle input =
case lexTricu input of
[] -> SEmpty
toks ->
case parseSingleExpr toks of
Left err -> errorWithoutStackTrace (handleParseError err)
Right ast -> ast
parseProgramM :: ParserM [TricuAST]
parseProgramM = do
skipMany topLevelNewline
exprs <- sepEndBy parseOneExpression (some topLevelNewline)
skipMany topLevelNewline
return exprs
parseOneExpression :: ParserM TricuAST
parseOneExpression = scnParserM *> parseExpressionM
scnParserM :: ParserM ()
scnParserM = skipMany $ do
t <- lookAhead anySingle
st <- get
if | (parenDepth st > 0 || bracketDepth st > 0) && case t of
LNewline -> True
_ -> False -> void $ satisfyM $ \case
LNewline -> True
_ -> False
| otherwise -> fail "In nested context or no space token" <|> empty
eofM :: ParserM ()
eofM = lift eof
parseExpressionM :: ParserM TricuAST
parseExpressionM = choice
[ try parseFunctionM
, try parseLambdaM
, try parseLambdaExpressionM
, try parseListLiteralM
, try parseApplicationM
, try parseTreeTermM
, parseLiteralM
] ]
parseFunction :: Parser SaplingAST parseFunctionM :: ParserM TricuAST
parseFunction = do parseFunctionM = do
LIdentifier name <- satisfy isIdentifier LIdentifier name <- satisfyM $ \case
args <- many (satisfy isIdentifier) LIdentifier _ -> True
satisfy (== LAssign) _ -> False
body <- parseExpression args <- many $ satisfyM $ \case
return (SFunc name (map getIdentifier args) body) LIdentifier _ -> True
_ -> False
_ <- satisfyM (== LAssign)
scnParserM
body <- parseExpressionM
pure (SFunc name (map getIdentifier args) body)
parseAtomicBase :: Parser SaplingAST parseLambdaM :: ParserM TricuAST
parseAtomicBase = choice parseLambdaM =
[ try parseVarWithoutAssignment between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) $ do
, parseTreeLeaf _ <- satisfyM (== LBackslash)
, parseGrouped param <- satisfyM $ \case
] LIdentifier _ -> True
parseVarWithoutAssignment :: Parser SaplingAST _ -> False
parseVarWithoutAssignment = do rest <- many $ satisfyM $ \case
LIdentifier name <- satisfy isIdentifier LIdentifier _ -> True
if (name == "t" || name == "__result") _ -> False
then fail $ "Reserved keyword: " ++ name ++ " cannot be assigned." _ <- satisfyM (== LColon)
else notFollowedBy (satisfy (== LAssign)) *> return (SVar name) scnParserM
body <- parseLambdaExpressionM
let nested = foldr (\v acc -> SLambda [getIdentifier v] acc) body rest
pure (SLambda [getIdentifier param] nested)
parseLambda :: Parser SaplingAST parseLambdaExpressionM :: ParserM TricuAST
parseLambda = between (satisfy (== LOpenParen)) (satisfy (== LCloseParen)) $ do parseLambdaExpressionM = choice
satisfy (== LBackslash) [ try parseLambdaApplicationM
param <- satisfy isIdentifier , parseAtomicLambdaM
rest <- many (satisfy isIdentifier)
satisfy (== LColon)
body <- parseLambdaExpression
let nestedLambda = foldr (\v acc -> SLambda [v] acc) body (map getIdentifier rest)
return (SLambda [getIdentifier param] nestedLambda)
parseLambdaExpression :: Parser SaplingAST
parseLambdaExpression = choice
[ try parseLambdaApplication
, parseAtomicLambda
] ]
parseAtomicLambda :: Parser SaplingAST parseAtomicLambdaM :: ParserM TricuAST
parseAtomicLambda = choice parseAtomicLambdaM = choice
[ parseVar [ parseVarM
, parseTreeLeaf , parseTreeLeafM
, parseLiteral , parseLiteralM
, parseListLiteral , parseListLiteralM
, try parseLambda , try parseLambdaM
, between (satisfy (== LOpenParen)) (satisfy (== LCloseParen)) parseLambdaExpression , between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseLambdaExpressionM
] ]
parseApplication :: Parser SaplingAST parseApplicationM :: ParserM TricuAST
parseApplication = do parseApplicationM = do
func <- parseAtomicBase func <- parseAtomicBaseM
args <- many parseAtomic scnParserM
return $ foldl (\acc arg -> SApp acc arg) func args args <- many $ do
scnParserM
arg <- parseAtomicM
return arg
return $ foldl SApp func args
parseLambdaApplication :: Parser SaplingAST parseLambdaApplicationM :: ParserM TricuAST
parseLambdaApplication = do parseLambdaApplicationM = do
func <- parseAtomicLambda func <- parseAtomicLambdaM
args <- many parseAtomicLambda scnParserM
return $ foldl (\acc arg -> SApp acc arg) func args args <- many $ do
arg <- parseAtomicLambdaM
scnParserM
pure arg
pure $ foldl SApp func args
isTreeTerm :: SaplingAST -> Bool parseAtomicBaseM :: ParserM TricuAST
isTreeTerm TLeaf = True parseAtomicBaseM = choice
isTreeTerm (TStem _) = True [ parseTreeLeafM
isTreeTerm (TFork _ _) = True , parseGroupedM
isTreeTerm _ = False ]
parseTreeLeaf :: Parser SaplingAST parseTreeLeafM :: ParserM TricuAST
parseTreeLeaf = satisfy isKeywordT *> notFollowedBy (satisfy (== LAssign)) *> pure TLeaf parseTreeLeafM = do
_ <- satisfyM $ \case
LKeywordT -> True
_ -> False
notFollowedBy $ lift $ satisfy (== LAssign)
pure TLeaf
parseTreeTermM :: ParserM TricuAST
parseTreeTermM = do
base <- parseTreeLeafOrParenthesizedM
rest <- many parseTreeLeafOrParenthesizedM
pure (foldl combine base rest)
where
combine acc next
| TLeaf <- acc = TStem next
| TStem t <- acc = TFork t next
| TFork _ _ <- acc = TFork acc next
parseTreeLeafOrParenthesizedM :: ParserM TricuAST
parseTreeLeafOrParenthesizedM = choice
[ between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) parseTreeTermM
, parseTreeLeafM
]
parseAtomicM :: ParserM TricuAST
parseAtomicM = choice
[ parseVarM
, parseTreeLeafM
, parseListLiteralM
, parseGroupedM
, parseLiteralM
]
parseGroupedM :: ParserM TricuAST
parseGroupedM = between (satisfyM (== LOpenParen)) (satisfyM (== LCloseParen)) $
scnParserM *> parseExpressionM <* scnParserM
parseLiteralM :: ParserM TricuAST
parseLiteralM = choice
[ parseIntLiteralM
, parseStrLiteralM
]
parseListLiteralM :: ParserM TricuAST
parseListLiteralM = do
_ <- satisfyM (== LOpenBracket)
elements <- many $ do
scnParserM
parseListItemM
scnParserM
_ <- satisfyM (== LCloseBracket)
pure (SList elements)
parseListItemM :: ParserM TricuAST
parseListItemM = choice
[ parseGroupedItemM
, parseListLiteralM
, parseSingleItemM
]
parseGroupedItemM :: ParserM TricuAST
parseGroupedItemM = do
_ <- satisfyM (== LOpenParen)
inner <- parseExpressionM
_ <- satisfyM (== LCloseParen)
pure inner
parseSingleItemM :: ParserM TricuAST
parseSingleItemM = do
token <- satisfyM $ \case
LIdentifier _ -> True
LKeywordT -> True
_ -> False
case token of
LIdentifier name -> pure (SVar name)
LKeywordT -> pure TLeaf
_ -> fail "Unexpected token in list item"
parseVarM :: ParserM TricuAST
parseVarM = do
LIdentifier name <- satisfyM $ \case
LIdentifier _ -> True
_ -> False
if name == "t" || name == "__result"
then fail ("Reserved keyword: " ++ name ++ " cannot be assigned.")
else pure (SVar name)
parseIntLiteralM :: ParserM TricuAST
parseIntLiteralM = do
LIntegerLiteral value <- satisfyM $ \case
LIntegerLiteral _ -> True
_ -> False
pure (SInt value)
parseStrLiteralM :: ParserM TricuAST
parseStrLiteralM = do
LStringLiteral value <- satisfyM $ \case
LStringLiteral _ -> True
_ -> False
pure (SStr value)
getIdentifier :: LToken -> String getIdentifier :: LToken -> String
getIdentifier (LIdentifier name) = name getIdentifier (LIdentifier name) = name
getIdentifier _ = error "Expected identifier" getIdentifier _ = errorWithoutStackTrace "Expected identifier"
parseTreeTerm :: Parser SaplingAST
parseTreeTerm = do
base <- parseTreeLeafOrParenthesized
rest <- many parseTreeLeafOrParenthesized
pure $ foldl combine base rest
where
combine acc next = case acc of
TLeaf -> TStem next
TStem t -> TFork t next
TFork _ _ -> TFork acc next
parseTreeLeafOrParenthesized :: Parser SaplingAST
parseTreeLeafOrParenthesized = choice
[ between (satisfy (== LOpenParen)) (satisfy (== LCloseParen)) parseTreeTerm
, parseTreeLeaf
]
foldTree :: [SaplingAST] -> SaplingAST
foldTree [] = TLeaf
foldTree [x] = x
foldTree (x:y:rest) = TFork x (foldTree (y:rest))
parseAtomic :: Parser SaplingAST
parseAtomic = choice
[ parseVar
, parseTreeLeaf
, parseListLiteral
, parseGrouped
, parseLiteral
]
parseGrouped :: Parser SaplingAST
parseGrouped = between (satisfy (== LOpenParen)) (satisfy (== LCloseParen)) parseExpression
parseLiteral :: Parser SaplingAST
parseLiteral = choice
[ parseIntLiteral
, parseStrLiteral
]
parens :: Parser SaplingAST -> Parser SaplingAST
parens p = do
satisfy (== LOpenParen)
result <- p
satisfy (== LCloseParen)
return result
parseListLiteral :: Parser SaplingAST
parseListLiteral = do
satisfy (== LOpenBracket)
elements <- many parseListItem
satisfy (== LCloseBracket)
return (SList elements)
parseListItem :: Parser SaplingAST
parseListItem = choice
[ parseGroupedItem
, parseListLiteral
, parseSingleItem
]
parseGroupedItem :: Parser SaplingAST
parseGroupedItem = do
satisfy (== LOpenParen)
inner <- parseExpression
satisfy (== LCloseParen)
return inner
parseSingleItem :: Parser SaplingAST
parseSingleItem = do
token <- satisfy isListItem
case token of
LIdentifier name -> return (SVar name)
LKeywordT -> return TLeaf
_ -> fail "Unexpected token in list item"
isListItem :: LToken -> Bool
isListItem (LIdentifier _) = True
isListItem LKeywordT = True
isListItem _ = False
parseVar :: Parser SaplingAST
parseVar = do
LIdentifier name <- satisfy isIdentifier
if (name == "t" || name == "__result")
then fail $ "Reserved keyword: " ++ name ++ " cannot be assigned."
else return (SVar name)
parseIntLiteral :: Parser SaplingAST
parseIntLiteral = do
LIntegerLiteral value <- satisfy isIntegerLiteral
return (SInt value)
parseStrLiteral :: Parser SaplingAST
parseStrLiteral = do
LStringLiteral value <- satisfy isStringLiteral
return (SStr value)
-- Boolean Helpers
isKeywordT (LKeywordT) = True
isKeywordT _ = False
isIdentifier (LIdentifier _) = True
isIdentifier _ = False
isIntegerLiteral (LIntegerLiteral _) = True
isIntegerLiteral _ = False
isStringLiteral (LStringLiteral _) = True
isStringLiteral _ = False
isLiteral (LIntegerLiteral _) = True
isLiteral (LStringLiteral _) = True
isLiteral _ = False
isNewline (LNewline) = True
isNewline _ = False
-- Error Handling
handleParseError :: ParseErrorBundle [LToken] Void -> String handleParseError :: ParseErrorBundle [LToken] Void -> String
handleParseError bundle = handleParseError bundle =
let errors = bundleErrors bundle let errors = bundleErrors bundle
errorList = toList errors formattedErrors = map formatError (Data.List.NonEmpty.toList errors)
formattedErrors = map showError errorList
in unlines ("Parse error(s) encountered:" : formattedErrors) in unlines ("Parse error(s) encountered:" : formattedErrors)
showError :: ParseError [LToken] Void -> String formatError :: ParseError [LToken] Void -> String
showError (TrivialError offset (Just (Tokens tokenStream)) expected) = formatError (TrivialError offset unexpected expected) =
"Parse error at offset " ++ show offset ++ ": unexpected token " let unexpectedMsg = case unexpected of
++ show tokenStream ++ ", expected one of " ++ show (Set.toList expected) Just x -> "unexpected token " ++ show x
showError (FancyError offset fancy) = Nothing -> "unexpected end of input"
"Parse error at offset " ++ show offset ++ ":\n " ++ unlines (map show (Set.toList fancy)) expectedMsg = if null expected
showError (TrivialError offset Nothing expected) = then ""
"Parse error at offset " ++ show offset ++ ": expected one of " else "expected " ++ show (Set.toList expected)
++ show (Set.toList expected) in "Parse error at offset " ++ show offset ++ ": " ++ unexpectedMsg ++
if null expectedMsg then "" else " " ++ expectedMsg
formatError (FancyError offset _) =
"Parse error at offset " ++ show offset ++ ": unexpected FancyError"

View File

@ -1,42 +1,68 @@
module REPL where module REPL where
import Eval import Eval
import FileEval
import Lexer import Lexer
import Parser import Parser
import Research import Research
import Data.List (intercalate) import Control.Exception (SomeException, catch)
import qualified Data.Map as Map import Control.Monad.IO.Class (liftIO)
import Data.Char (isSpace)
import Data.List (dropWhile, dropWhileEnd, intercalate)
import System.Console.Haskeline import System.Console.Haskeline
import System.IO (hFlush, stdout)
repl :: Map.Map String T -> IO () import qualified Data.Map as Map
repl :: Env -> IO ()
repl env = runInputT defaultSettings (loop env) repl env = runInputT defaultSettings (loop env)
where where
loop :: Map.Map String T -> InputT IO () loop :: Env -> InputT IO ()
loop env = do loop env = do
minput <- getInputLine "sapling < " minput <- getInputLine "tricu < "
case minput of if
Nothing -> outputStrLn "Goodbye!" | Nothing <- minput -> outputStrLn "Exiting tricu"
Just ":_exit" -> outputStrLn "Goodbye!" | Just s <- minput, strip s == "!exit" -> outputStrLn "Exiting tricu"
Just "" -> do | Just s <- minput, strip s == "" -> do
outputStrLn "" outputStrLn ""
loop env loop env
Just input -> do | Just s <- minput, strip s == "!load" -> do
let clearEnv = Map.delete "__result" env path <- getInputLine "File path to load < "
newEnv = evalSingle clearEnv (parseSingle input) if
case Map.lookup "__result" newEnv of | Nothing <- path -> do
Just r -> do outputStrLn "No input received; stopping import."
outputStrLn $ "sapling > " ++ show r loop env
outputStrLn $ "DECODE -: " ++ decodeResult r | Just p <- path -> do
Nothing -> return () loadedEnv <- liftIO $ evaluateFileWithContext env (strip p) `catch` \e -> errorHandler env e
loop newEnv loop $ Map.delete "__result" (Map.union loadedEnv env)
| Just s <- minput -> do
if
| take 2 s == "--" -> loop env
| otherwise -> do
newEnv <- liftIO $ processInput env s `catch` errorHandler env
loop newEnv
processInput :: Env -> String -> IO Env
processInput env input = do
let asts = parseTricu input
newEnv = evalTricu env asts
if
| Just r <- Map.lookup "__result" newEnv -> do
putStrLn $ "tricu > " ++ decodeResult r
| otherwise -> return ()
return newEnv
errorHandler :: Env -> SomeException -> IO (Env)
errorHandler env e = do
putStrLn $ "Error: " ++ show e
return env
strip :: String -> String
strip = dropWhileEnd isSpace . dropWhile isSpace
decodeResult :: T -> String decodeResult :: T -> String
decodeResult tc = case toNumber tc of decodeResult tc
Right num -> show num | Right num <- toNumber tc = show num
Left _ -> case toString tc of | Right str <- toString tc = "\"" ++ str ++ "\""
Right str -> "\"" ++ str ++ "\"" | Right list <- toList tc = "[" ++ intercalate ", " (map decodeResult list) ++ "]"
Left _ -> case toList tc of | otherwise = formatResult TreeCalculus tc
Right list -> "[" ++ intercalate ", " (map decodeResult list) ++ "]"
Left _ -> ""

View File

@ -1,13 +1,57 @@
module Research where module Research where
import Data.List (intercalate)
import Control.Monad.State import Control.Monad.State
import qualified Data.Map as Map import Data.List (intercalate)
import Data.Map (Map) import Data.Map (Map)
import Data.Text (Text, replace)
import System.Console.CmdArgs (Data, Typeable)
import qualified Data.Map as Map
import qualified Data.Text as T
-- Tree Calculus Types
data T = Leaf | Stem T | Fork T T data T = Leaf | Stem T | Fork T T
deriving (Show, Eq, Ord) deriving (Show, Eq, Ord)
-- Abstract Syntax Tree for tricu
data TricuAST
= SVar String
| SInt Int
| SStr String
| SList [TricuAST]
| SFunc String [String] TricuAST
| SApp TricuAST TricuAST
| TLeaf
| TStem TricuAST
| TFork TricuAST TricuAST
| SLambda [String] TricuAST
| SEmpty
deriving (Show, Eq, Ord)
-- Lexer Tokens
data LToken
= LKeywordT
| LIdentifier String
| LIntegerLiteral Int
| LStringLiteral String
| LAssign
| LColon
| LBackslash
| LOpenParen
| LCloseParen
| LOpenBracket
| LCloseBracket
| LNewline
deriving (Show, Eq, Ord)
-- Output formats
data EvaluatedForm = TreeCalculus | FSL | AST | Ternary | Ascii
deriving (Show, Data, Typeable)
-- Environment containing previously evaluated TC terms
type Env = Map.Map String T
-- Tree Calculus Reduction
apply :: T -> T -> T apply :: T -> T -> T
apply Leaf b = Stem b apply Leaf b = Stem b
apply (Stem a) b = Fork a b apply (Stem a) b = Fork a b
@ -17,29 +61,6 @@ apply (Fork (Fork a1 a2) a3) Leaf = a1
apply (Fork (Fork a1 a2) a3) (Stem u) = apply a2 u apply (Fork (Fork a1 a2) a3) (Stem u) = apply a2 u
apply (Fork (Fork a1 a2) a3) (Fork u v) = apply (apply a3 u) v apply (Fork (Fork a1 a2) a3) (Fork u v) = apply (apply a3 u) v
reduce :: T -> T
reduce expr =
let next = step expr
in if next == expr then expr else reduce next
step :: T -> T
step (Fork left right) = reduce (apply (reduce left) (reduce right))
step (Stem inner) = Stem (reduce inner)
step t = t
-- SKI Combinators
_S :: T
_S = Fork (Stem (Fork Leaf Leaf)) Leaf
_K :: T
_K = Stem Leaf
-- Identity
-- We use the "point-free" style which drops a redundant node
-- Full _I form (SKK): Fork (Stem (Stem Leaf)) (Stem Leaf)
_I :: T
_I = Fork (Stem (Stem Leaf)) Leaf
-- Booleans -- Booleans
_false :: T _false :: T
_false = Leaf _false = Leaf
@ -87,7 +108,31 @@ toList (Fork x rest) = case toList rest of
Left err -> Left err Left err -> Left err
toList _ = Left "Invalid Tree Calculus list" toList _ = Left "Invalid Tree Calculus list"
-- Utility -- Outputs
formatResult :: EvaluatedForm -> T -> String
formatResult TreeCalculus = toSimpleT . show
formatResult FSL = show
formatResult AST = show . toAST
formatResult Ternary = toTernaryString
formatResult Ascii = toAscii
toSimpleT :: String -> String
toSimpleT s = T.unpack
$ replace "Fork" "t"
$ replace "Stem" "t"
$ replace "Leaf" "t"
$ (T.pack s)
toTernaryString :: T -> String
toTernaryString Leaf = "0"
toTernaryString (Stem t) = "1" ++ toTernaryString t
toTernaryString (Fork t1 t2) = "2" ++ toTernaryString t1 ++ toTernaryString t2
toAST :: T -> TricuAST
toAST Leaf = TLeaf
toAST (Stem a) = TStem (toAST a)
toAST (Fork a b) = TFork (toAST a) (toAST b)
toAscii :: T -> String toAscii :: T -> String
toAscii tree = go tree "" True toAscii tree = go tree "" True
where where
@ -102,41 +147,4 @@ toAscii tree = go tree "" True
++ go left (prefix ++ (if isLast then " " else "| ")) False ++ go left (prefix ++ (if isLast then " " else "| ")) False
++ go right (prefix ++ (if isLast then " " else "| ")) True ++ go right (prefix ++ (if isLast then " " else "| ")) True
rules :: IO () -- Utility
rules = putStr $ header
++ (unlines $ tcRules)
++ (unlines $ haskellRules)
++ footer
where
tcRules :: [String]
tcRules =
[ "| |"
, "| ┌--------- | Tree Calculus | ---------┐ |"
, "| | 1. t t a b -> a | |"
, "| | 2. t (t a) b c -> a c (b c)| |"
, "| | 3a. t (t a b) c t -> a | |"
, "| | 3b. t (t a b) c (t u) -> b u | |"
, "| | 3c. t (t a b) c (t u v) -> c u v | |"
, "| └-------------------------------------┘ |"
, "| |"
]
haskellRules :: [String]
haskellRules =
[ "| ┌------------------------------ | Haskell | --------------------------------┐ |"
, "| | | |"
, "| | data T = Leaf | Stem T | Fork TT | |"
, "| | | |"
, "| | apply :: T -> T -> T | |"
, "| | apply Leaf b = Stem b | |"
, "| | apply (Stem a) b = Fork a b | |"
, "| | apply (Fork Leaf a) _ = a | |"
, "| | apply (Fork (Stem a1) a2) b = apply (apply a1 b) (apply a2 b) | |"
, "| | apply (Fork (Fork a1 a2) a3) Leaf = a1 | |"
, "| | apply (Fork (Fork a1 a2) a3) (Stem u) = apply a2 u | |"
, "| | apply (Fork (Fork a1 a2) a3) (Fork u v) = apply (apply a3 u) v | |"
, "| └---------------------------------------------------------------------------┘ |"
]
header :: String
header = "┌-------------------- | Rules for evaluating Tree Calculus | -------------------┐\n"
footer :: String
footer = "└-------------------- | Rules for evaluating Tree Calculus | -------------------┘\n"

View File

@ -1,11 +1,14 @@
module Main where module Main where
import Eval import Eval
import FileEval
import Lexer import Lexer
import Library
import Parser import Parser
import REPL
import Research import Research
import Control.Exception (evaluate, try, SomeException) import Control.Exception (evaluate, try, SomeException)
import Control.Monad.IO.Class (liftIO)
import Test.Tasty import Test.Tasty
import Test.Tasty.HUnit import Test.Tasty.HUnit
import Test.Tasty.QuickCheck import Test.Tasty.QuickCheck
@ -17,304 +20,500 @@ import qualified Data.Set as Set
main :: IO () main :: IO ()
main = defaultMain tests main = defaultMain tests
runSapling :: String -> String runTricu :: String -> String
runSapling s = show $ result (evalSapling Map.empty $ parseSapling s) runTricu s = show $ result (evalTricu Map.empty $ parseTricu s)
tests :: TestTree tests :: TestTree
tests = testGroup "Sapling Tests" tests = testGroup "Tricu Tests"
[ lexerTests [ lexer
, parserTests , parser
, integrationTests , simpleEvaluation
, evaluationTests , lambdas
, lambdaEvalTests , baseLibrary
, propertyTests , fileEval
, demos
] ]
lexerTests :: TestTree lexer :: TestTree
lexerTests = testGroup "Lexer Tests" lexer = testGroup "Lexer Tests"
[ testCase "Lex simple identifiers" $ do [ testCase "Lex simple identifiers" $ do
let input = "x a b = a" let input = "x a b = a"
expect = Right [LIdentifier "x", LIdentifier "a", LIdentifier "b", LAssign, LIdentifier "a"] expect = Right [LIdentifier "x", LIdentifier "a", LIdentifier "b", LAssign, LIdentifier "a"]
runParser saplingLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex Tree Calculus terms" $ do , testCase "Lex Tree Calculus terms" $ do
let input = "t t t" let input = "t t t"
expect = Right [LKeywordT, LKeywordT, LKeywordT] expect = Right [LKeywordT, LKeywordT, LKeywordT]
runParser saplingLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex escaped characters in strings" $ do , testCase "Lex escaped characters in strings" $ do
let input = "\"hello\\nworld\"" let input = "\"hello\\nworld\""
expect = Right [LStringLiteral "hello\\nworld"] expect = Right [LStringLiteral "hello\\nworld"]
runParser saplingLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex mixed literals" $ do , testCase "Lex mixed literals" $ do
let input = "t \"string\" 42" let input = "t \"string\" 42"
expect = Right [LKeywordT, LStringLiteral "string", LIntegerLiteral 42] expect = Right [LKeywordT, LStringLiteral "string", LIntegerLiteral 42]
runParser saplingLexer "" input @?= expect runParser tricuLexer "" input @?= expect
, testCase "Lex invalid token" $ do , testCase "Lex invalid token" $ do
let input = "$invalid" let input = "&invalid"
case runParser saplingLexer "" input of case runParser tricuLexer "" input of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected lexer to fail on invalid token" Right _ -> assertFailure "Expected lexer to fail on invalid token"
, testCase "Drop trailing whitespace in definitions" $ do , testCase "Drop trailing whitespace in definitions" $ do
let input = "x = 5 " let input = "x = 5 "
expect = [LIdentifier "x",LAssign,LIntegerLiteral 5] expect = [LIdentifier "x",LAssign,LIntegerLiteral 5]
case (runParser saplingLexer "" input) of case (runParser tricuLexer "" input) of
Left _ -> assertFailure "Failed to lex input" Left _ -> assertFailure "Failed to lex input"
Right i -> i @?= expect Right i -> i @?= expect
, testCase "Error when using invalid characters in identifiers" $ do , testCase "Error when using invalid characters in identifiers" $ do
case (runParser saplingLexer "" "__result = 5") of case (runParser tricuLexer "" "__result = 5") of
Left _ -> return () Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of __result" Right _ -> assertFailure "Expected failure when trying to assign the value of __result"
] ]
parserTests :: TestTree parser :: TestTree
parserTests = testGroup "Parser Tests" parser = testGroup "Parser Tests"
[ --testCase "Error when parsing incomplete definitions" $ do [ testCase "Error when assigning a value to T" $ do
-- let input = lexSapling "x = " let tokens = lexTricu "t = x"
-- case (runParser parseExpression "" input) of case parseSingleExpr tokens of
-- Left _ -> return () Left _ -> return ()
-- Right _ -> assertFailure "Expected failure on invalid input"
testCase "Error when assigning a value to T" $ do
let input = lexSapling "t = x"
case (runParser parseExpression "" input) of
Left _ -> return ()
Right _ -> assertFailure "Expected failure when trying to assign the value of T" Right _ -> assertFailure "Expected failure when trying to assign the value of T"
, testCase "Parse function definitions" $ do , testCase "Parse function definitions" $ do
let input = "x = (\\a b c : a)" let input = "x = (\\a b c : a)"
expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a")))) expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SLambda ["c"] (SVar "a"))))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested Tree Calculus terms" $ do , testCase "Parse nested Tree Calculus terms" $ do
let input = "t (t t) t" let input = "t (t t) t"
expect = SApp (SApp TLeaf (SApp TLeaf TLeaf)) TLeaf expect = SApp (SApp TLeaf (SApp TLeaf TLeaf)) TLeaf
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse sequential Tree Calculus terms" $ do , testCase "Parse sequential Tree Calculus terms" $ do
let input = "t t t" let input = "t t t"
expect = SApp (SApp TLeaf TLeaf) TLeaf expect = SApp (SApp TLeaf TLeaf) TLeaf
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse mixed list literals" $ do , testCase "Parse mixed list literals" $ do
let input = "[t (\"hello\") t]" let input = "[t (\"hello\") t]"
expect = SList [TLeaf, SStr "hello", TLeaf] expect = SList [TLeaf, SStr "hello", TLeaf]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse function with applications" $ do , testCase "Parse function with applications" $ do
let input = "f = (\\x : t x)" let input = "f = (\\x : t x)"
expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x"))) expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SVar "x")))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested lists" $ do , testCase "Parse nested lists" $ do
let input = "[t [(t t)]]" let input = "[t [(t t)]]"
expect = SList [TLeaf,SList [SApp TLeaf TLeaf]] expect = SList [TLeaf,SList [SApp TLeaf TLeaf]]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse complex parentheses" $ do , testCase "Parse complex parentheses" $ do
let input = "t (t t (t t))" let input = "t (t t (t t))"
expect = SApp TLeaf (SApp (SApp TLeaf TLeaf) (SApp TLeaf TLeaf)) expect = SApp TLeaf (SApp (SApp TLeaf TLeaf) (SApp TLeaf TLeaf))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse empty list" $ do , testCase "Parse empty list" $ do
let input = "[]" let input = "[]"
expect = SList [] expect = SList []
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse multiple nested lists" $ do , testCase "Parse multiple nested lists" $ do
let input = "[[t t] [t (t t)]]" let input = "[[t t] [t (t t)]]"
expect = SList [SList [TLeaf,TLeaf],SList [TLeaf,SApp TLeaf TLeaf]] expect = SList [SList [TLeaf,TLeaf],SList [TLeaf,SApp TLeaf TLeaf]]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse whitespace variance" $ do , testCase "Parse whitespace variance" $ do
let input1 = "[t t]" let input1 = "[t t]"
let input2 = "[ t t ]" let input2 = "[ t t ]"
expect = SList [TLeaf, TLeaf] expect = SList [TLeaf, TLeaf]
parseSingle input1 @?= expect parseSingle input1 @?= expect
parseSingle input2 @?= expect parseSingle input2 @?= expect
, testCase "Parse string in list" $ do , testCase "Parse string in list" $ do
let input = "[(\"hello\")]" let input = "[(\"hello\")]"
expect = SList [SStr "hello"] expect = SList [SStr "hello"]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse parentheses inside list" $ do , testCase "Parse parentheses inside list" $ do
let input = "[t (t t)]" let input = "[t (t t)]"
expect = SList [TLeaf,SApp TLeaf TLeaf] expect = SList [TLeaf,SApp TLeaf TLeaf]
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse nested parentheses in function body" $ do , testCase "Parse nested parentheses in function body" $ do
let input = "f = (\\x : t (t (t t)))" let input = "f = (\\x : t (t (t t)))"
expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf)))) expect = SFunc "f" [] (SLambda ["x"] (SApp TLeaf (SApp TLeaf (SApp TLeaf TLeaf))))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse lambda abstractions" $ do , testCase "Parse lambda abstractions" $ do
let input = "(\\a : a)" let input = "(\\a : a)"
expect = (SLambda ["a"] (SVar "a")) expect = (SLambda ["a"] (SVar "a"))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Parse multiple arguments to lambda abstractions" $ do , testCase "Parse multiple arguments to lambda abstractions" $ do
let input = "x = (\\a b : a)" let input = "x = (\\a b : a)"
expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a"))) expect = SFunc "x" [] (SLambda ["a"] (SLambda ["b"] (SVar "a")))
parseSingle input @?= expect parseSingle input @?= expect
, testCase "Grouping T terms with parentheses in function application" $ do , testCase "Grouping T terms with parentheses in function application" $ do
let input = "x = (\\a : a)\nx (t)" let input = "x = (\\a : a)\nx (t)"
expect = [SFunc "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf] expect = [SFunc "x" [] (SLambda ["a"] (SVar "a")),SApp (SVar "x") TLeaf]
parseSapling input @?= expect parseTricu input @?= expect
, testCase "Comments 1" $ do
let input = "(t) (t) -- (t)"
expect = [SApp TLeaf TLeaf]
parseTricu input @?= expect
, testCase "Comments 2" $ do
let input = "(t) -- (t) -- (t)"
expect = [TLeaf]
parseTricu input @?= expect
] ]
integrationTests :: TestTree simpleEvaluation :: TestTree
integrationTests = testGroup "Integration Tests" simpleEvaluation = testGroup "Evaluation Tests"
[ testCase "Combine lexer and parser" $ do
let input = "x = t t t"
expect = SFunc "x" [] (SApp (SApp TLeaf TLeaf) TLeaf)
parseSingle input @?= expect
, testCase "Complex Tree Calculus expression" $ do
let input = "t (t t t) t"
expect = SApp (SApp TLeaf (SApp (SApp TLeaf TLeaf) TLeaf)) TLeaf
parseSingle input @?= expect
]
evaluationTests :: TestTree
evaluationTests = testGroup "Evaluation Tests"
[ testCase "Evaluate single Leaf" $ do [ testCase "Evaluate single Leaf" $ do
let input = "t" let input = "t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Leaf (result $ evalSingle Map.empty ast) @?= Leaf
, testCase "Evaluate single Stem" $ do , testCase "Evaluate single Stem" $ do
let input = "t t" let input = "t t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Stem Leaf (result $ evalSingle Map.empty ast) @?= Stem Leaf
, testCase "Evaluate single Fork" $ do , testCase "Evaluate single Fork" $ do
let input = "t t t" let input = "t t t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Fork Leaf Leaf (result $ evalSingle Map.empty ast) @?= Fork Leaf Leaf
, testCase "Evaluate nested Fork and Stem" $ do , testCase "Evaluate nested Fork and Stem" $ do
let input = "t (t t) t" let input = "t (t t) t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= Fork (Stem Leaf) Leaf (result $ evalSingle Map.empty ast) @?= Fork (Stem Leaf) Leaf
, testCase "Evaluate `not` function" $ do , testCase "Evaluate `not` function" $ do
let input = "t (t (t t) (t t t)) t" let input = "t (t (t t) (t t t)) t"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= (result $ evalSingle Map.empty ast) @?=
Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
, testCase "Environment updates with definitions" $ do , testCase "Environment updates with definitions" $ do
let input = "x = t\ny = x" let input = "x = t\ny = x"
env = evalSapling Map.empty (parseSapling input) env = evalTricu Map.empty (parseTricu input)
Map.lookup "x" env @?= Just Leaf Map.lookup "x" env @?= Just Leaf
Map.lookup "y" env @?= Just Leaf Map.lookup "y" env @?= Just Leaf
, testCase "Variable substitution" $ do , testCase "Variable substitution" $ do
let input = "x = t t\ny = t x\ny" let input = "x = t t\ny = t x\ny"
env = evalSapling Map.empty (parseSapling input) env = evalTricu Map.empty (parseTricu input)
(result env) @?= Stem (Stem Leaf) (result env) @?= Stem (Stem Leaf)
, testCase "Multiline input evaluation" $ do , testCase "Multiline input evaluation" $ do
let input = "x = t\ny = t t\nx" let input = "x = t\ny = t t\nx"
env = evalSapling Map.empty (parseSapling input) env = evalTricu Map.empty (parseTricu input)
(result env) @?= Leaf (result env) @?= Leaf
, testCase "Evaluate string literal" $ do , testCase "Evaluate string literal" $ do
let input = "\"hello\"" let input = "\"hello\""
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofString "hello" (result $ evalSingle Map.empty ast) @?= ofString "hello"
, testCase "Evaluate list literal" $ do , testCase "Evaluate list literal" $ do
let input = "[t (t t)]" let input = "[t (t t)]"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofList [Leaf, Stem Leaf] (result $ evalSingle Map.empty ast) @?= ofList [Leaf, Stem Leaf]
, testCase "Evaluate empty list" $ do , testCase "Evaluate empty list" $ do
let input = "[]" let input = "[]"
let ast = parseSingle input let ast = parseSingle input
(result $ evalSingle Map.empty ast) @?= ofList [] (result $ evalSingle Map.empty ast) @?= ofList []
, testCase "Evaluate variable dependency chain" $ do , testCase "Evaluate variable dependency chain" $ do
let input = "x = t (t t)\n \ let input = "x = t (t t)\n \
\ y = x\n \ \ y = x\n \
\ z = y\n \ \ z = y\n \
\ variablewithamuchlongername = z\n \ \ variablewithamuchlongername = z\n \
\ variablewithamuchlongername" \ variablewithamuchlongername"
env = evalSapling Map.empty (parseSapling input) env = evalTricu Map.empty (parseTricu input)
(result env) @?= (Stem (Stem Leaf)) (result env) @?= (Stem (Stem Leaf))
, testCase "Evaluate variable shadowing" $ do
, testCase "Immutable definitions" $ do
let input = "x = t t\nx = t\nx" let input = "x = t t\nx = t\nx"
env = evalSapling Map.empty (parseSapling input) env = evalTricu Map.empty (parseTricu input)
(result env) @?= Leaf result <- try (evaluate (runTricu input)) :: IO (Either SomeException String)
, testCase "Apply identity to Boolean Not" $ do case result of
Left _ -> return ()
Right _ -> assertFailure "Expected evaluation error"
, testCase "Apply identity to Boolean Not" $ do
let not = "(t (t (t t) (t t t)) t)" let not = "(t (t (t t) (t t t)) t)"
let input = "x = (\\a : a)\nx " ++ not let input = "x = (\\a : a)\nx " ++ not
env = evalSapling Map.empty (parseSapling input) env = evalTricu Map.empty (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) Leaf
, testCase "Constant function matches" $ do
let input = "k = (\\a b : a)\nk (t t) t"
env = evalSapling Map.empty (parseSapling input)
result env @?= Stem Leaf
, testCase "Boolean AND_ TF" $ do
let input = "and (t t) (t)"
env = evalSapling library (parseSapling input)
result env @?= Leaf
, testCase "Boolean AND_ FT" $ do
let input = "and (t) (t t)"
env = evalSapling library (parseSapling input)
result env @?= Leaf
, testCase "Boolean AND_ FF" $ do
let input = "and (t) (t)"
env = evalSapling library (parseSapling input)
result env @?= Leaf
, testCase "Boolean AND_ TT" $ do
let input = "and (t t) (t t)"
env = evalSapling library (parseSapling input)
result env @?= Stem Leaf
, testCase "Verifying Equality" $ do
let input = "equal (t t t) (t t t)"
env = evalSapling library (parseSapling input)
result env @?= Stem Leaf
] ]
lambdaEvalTests :: TestTree lambdas :: TestTree
lambdaEvalTests = testGroup "Lambda Evaluation Tests" lambdas = testGroup "Lambda Evaluation Tests"
[ testCase "Lambda Identity Function" $ do [ testCase "Lambda Identity Function" $ do
let input = "id = (\\x : x)\nid t" let input = "id = (\\x : x)\nid t"
runSapling input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda Constant Function (K combinator)" $ do , testCase "Lambda Constant Function (K combinator)" $ do
let input = "k = (\\x y : x)\nk t (t t)" let input = "k = (\\x y : x)\nk t (t t)"
runSapling input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda Application with Variable" $ do , testCase "Lambda Application with Variable" $ do
let input = "id = (\\x : x)\nval = t t\nid val" let input = "id = (\\x : x)\nval = t t\nid val"
runSapling input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda Application with Multiple Arguments" $ do , testCase "Lambda Application with Multiple Arguments" $ do
let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)" let input = "apply = (\\f x y : f x y)\nk = (\\a b : a)\napply k t (t t)"
runSapling input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Nested Lambda Application" $ do , testCase "Nested Lambda Application" $ do
let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t" let input = "apply = (\\f x y : f x y)\nid = (\\x : x)\napply (\\f x : f x) id t"
runSapling input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with a complex body" $ do , testCase "Lambda with a complex body" $ do
let input = "f = (\\x : t (t x))\nf t" let input = "f = (\\x : t (t x))\nf t"
runSapling input @?= "Stem (Stem Leaf)" runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda returning a function" $ do , testCase "Lambda returning a function" $ do
let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)" let input = "f = (\\x : (\\y : x))\ng = f t\ng (t t)"
runSapling input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with Shadowing" $ do , testCase "Lambda with Shadowing" $ do
let input = "f = (\\x : (\\x : x))\nf t (t t)" let input = "f = (\\x : (\\x : x))\nf t (t t)"
runSapling input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda returning another lambda" $ do , testCase "Lambda returning another lambda" $ do
let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)" let input = "k = (\\x : (\\y : x))\nk_app = k t\nk_app (t t)"
runSapling input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with free variables" $ do , testCase "Lambda with free variables" $ do
let input = "y = t t\nf = (\\x : y)\nf t" let input = "y = t t\nf = (\\x : y)\nf t"
runSapling input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "SKI Composition" $ do , testCase "SKI Composition" $ do
let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)" let input = "s = (\\x y z : x z (y z))\nk = (\\x y : x)\ni = (\\x : x)\ncomp = s k i\ncomp t (t t)"
runSapling input @?= "Stem (Stem Leaf)" runTricu input @?= "Stem (Stem Leaf)"
, testCase "Lambda with multiple parameters and application" $ do , testCase "Lambda with multiple parameters and application" $ do
let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)" let input = "f = (\\a b c : t a b c)\nf t (t t) (t t t)"
runSapling input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Lambda with nested application in the body" $ do , testCase "Lambda with nested application in the body" $ do
let input = "f = (\\x : t (t (t x)))\nf t" let input = "f = (\\x : t (t (t x)))\nf t"
runSapling input @?= "Stem (Stem (Stem Leaf))" runTricu input @?= "Stem (Stem (Stem Leaf))"
, testCase "Lambda returning a function and applying it" $ do , testCase "Lambda returning a function and applying it" $ do
let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)" let input = "f = (\\x : (\\y : t x y))\ng = f t\ng (t t)"
runSapling input @?= "Fork Leaf (Stem Leaf)" runTricu input @?= "Fork Leaf (Stem Leaf)"
, testCase "Lambda applying a variable" $ do , testCase "Lambda applying a variable" $ do
let input = "id = (\\x : x)\na = t t\nid a" let input = "id = (\\x : x)\na = t t\nid a"
runSapling input @?= "Stem Leaf" runTricu input @?= "Stem Leaf"
, testCase "Nested lambda abstractions in the same expression" $ do , testCase "Nested lambda abstractions in the same expression" $ do
let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t" let input = "f = (\\x : (\\y : x y))\ng = (\\z : z)\nf g t"
runSapling input @?= "Leaf" runTricu input @?= "Leaf"
, testCase "Lambda with a string literal" $ do , testCase "Lambda with a string literal" $ do
let input = "f = (\\x : x)\nf \"hello\"" let input = "f = (\\x : x)\nf \"hello\""
runSapling input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))" runTricu input @?= "Fork (Fork Leaf (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork Leaf (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) (Fork (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork (Stem Leaf) Leaf))))))) Leaf))))"
, testCase "Lambda with an integer literal" $ do , testCase "Lambda with an integer literal" $ do
let input = "f = (\\x : x)\nf 42" let input = "f = (\\x : x)\nf 42"
runSapling input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))" runTricu input @?= "Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) (Fork Leaf (Fork (Stem Leaf) Leaf)))))"
, testCase "Lambda with a list literal" $ do , testCase "Lambda with a list literal" $ do
let input = "f = (\\x : x)\nf [t (t t)]" let input = "f = (\\x : x)\nf [t (t t)]"
runSapling input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)" runTricu input @?= "Fork Leaf (Fork (Stem Leaf) Leaf)"
] ]
propertyTests :: TestTree baseLibrary :: TestTree
propertyTests = testGroup "Property Tests" baseLibrary = testGroup "Library Tests"
[ testProperty "Lexing and parsing round-trip" $ \input -> [ testCase "K combinator 1" $ do
case runParser saplingLexer "" input of library <- evaluateFile "./lib/base.tri"
Left _ -> property True let input = "k (t) (t t)"
Right tokens -> case runParser parseExpression "" tokens of env = evalTricu library (parseTricu input)
Left _ -> property True result env @?= Leaf
Right ast -> parseSingle input === ast
, testCase "K combinator 2" $ do
library <- evaluateFile "./lib/base.tri"
let input = "k (t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "K combinator 3" $ do
library <- evaluateFile "./lib/base.tri"
let input = "k (t t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf
, testCase "S combinator" $ do
library <- evaluateFile "./lib/base.tri"
let input = "s (t) (t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf (Stem Leaf)
, testCase "SKK == I (fully expanded)" $ do
library <- evaluateFile "./lib/base.tri"
let input = "s k k"
env = evalTricu library (parseTricu input)
result env @?= Fork (Stem (Stem Leaf)) (Stem Leaf)
, testCase "I combinator" $ do
library <- evaluateFile "./lib/base.tri"
let input = "i not?"
env = evalTricu library (parseTricu input)
result env @?= Fork (Fork (Stem Leaf) (Fork Leaf Leaf)) (Fork Leaf (Fork Leaf Leaf))
, testCase "Triage test Leaf" $ do
library <- evaluateFile "./lib/base.tri"
let input = "test t"
env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Leaf\""
, testCase "Triage test (Stem Leaf)" $ do
library <- evaluateFile "./lib/base.tri"
let input = "test (t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Stem\""
, testCase "Triage test (Fork Leaf Leaf)" $ do
library <- evaluateFile "./lib/base.tri"
let input = "test (t t t)"
env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Fork\""
, testCase "Boolean NOT: true" $ do
library <- evaluateFile "./lib/base.tri"
let input = "not? true"
env = result $ evalTricu library (parseTricu input)
env @?= Leaf
, testCase "Boolean NOT: false" $ do
library <- evaluateFile "./lib/base.tri"
let input = "not? false"
env = result $ evalTricu library (parseTricu input)
env @?= Stem Leaf
, testCase "Boolean AND TF" $ do
library <- evaluateFile "./lib/base.tri"
let input = "and? (t t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "Boolean AND FT" $ do
library <- evaluateFile "./lib/base.tri"
let input = "and? (t) (t t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "Boolean AND FF" $ do
library <- evaluateFile "./lib/base.tri"
let input = "and? (t) (t)"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "Boolean AND TT" $ do
library <- evaluateFile "./lib/base.tri"
let input = "and? (t t) (t t)"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "List head" $ do
library <- evaluateFile "./lib/base.tri"
let input = "head [(t) (t t) (t t t)]"
env = evalTricu library (parseTricu input)
result env @?= Leaf
, testCase "List tail" $ do
library <- evaluateFile "./lib/base.tri"
let input = "head (tail (tail [(t) (t t) (t t t)]))"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf
, testCase "List map" $ do
library <- evaluateFile "./lib/base.tri"
let input = "head (tail (map (\\a : (t t t)) [(t) (t) (t)]))"
env = evalTricu library (parseTricu input)
result env @?= Fork Leaf Leaf
, testCase "Empty list check" $ do
library <- evaluateFile "./lib/base.tri"
let input = "emptyList? []"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "Non-empty list check" $ do
library <- evaluateFile "./lib/base.tri"
let input = "not? (emptyList? [(1) (2) (3)])"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
, testCase "Concatenate strings" $ do
library <- evaluateFile "./lib/base.tri"
let input = "lconcat \"Hello, \" \"world!\""
env = decodeResult $ result $ evalTricu library (parseTricu input)
env @?= "\"Hello, world!\""
, testCase "Verifying Equality" $ do
library <- evaluateFile "./lib/base.tri"
let input = "equal? (t t t) (t t t)"
env = evalTricu library (parseTricu input)
result env @?= Stem Leaf
]
fileEval :: TestTree
fileEval = testGroup "File evaluation tests"
[ testCase "Forks" $ do
res <- liftIO $ evaluateFileResult "./test/fork.tri"
res @?= Fork Leaf Leaf
, testCase "File ends with comment" $ do
res <- liftIO $ evaluateFileResult "./test/comments-1.tri"
res @?= Fork (Stem Leaf) Leaf
, testCase "Mapping and Equality" $ do
res <- liftIO $ evaluateFileResult "./test/map.tri"
res @?= Stem Leaf
, testCase "Eval and decoding string" $ do
library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./test/string.tri"
decodeResult (result res) @?= "\"String test!\""
]
demos :: TestTree
demos = testGroup "Test provided demo functionality"
[ testCase "Structural equality demo" $ do
library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./demos/equality.tri"
decodeResult (result res) @?= "t t"
, testCase "Convert values back to source code demo" $ do
library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./demos/toSource.tri"
decodeResult (result res) @?= "\"(t (t (t t) (t t t)) (t t (t t t)))\""
, testCase "Determining the size of functions" $ do
library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./demos/size.tri"
decodeResult (result res) @?= "2071"
, testCase "Level Order Traversal demo" $ do
library <- liftIO $ evaluateFile "./lib/base.tri"
res <- liftIO $ evaluateFileWithContext library "./demos/levelOrderTraversal.tri"
decodeResult (result res) @?= "\"\n1 \n2 3 \n4 5 6 7 \n8 11 10 9 12 \""
] ]

1
test/ascii.tri Normal file
View File

@ -0,0 +1 @@
t (t (t (t (t t) (t t t)) t) t t) t

1
test/assignment.tri Normal file
View File

@ -0,0 +1 @@
x = t (t t) t

9
test/comments-1.tri Normal file
View File

@ -0,0 +1,9 @@
-- This is a tricu comment!
-- t (t t) (t (t t t))
-- t (t t t) (t t)
-- x = (\a : a)
t (t t) t -- Fork (Stem Leaf) Leaf
-- t t
-- x
-- x = (\a : a)
-- t

1
test/fork.tri Normal file
View File

@ -0,0 +1 @@
t t t

24
test/map.tri Normal file
View File

@ -0,0 +1,24 @@
false = t
true = t t
_ = t
k = t t
i = t (t k) t
s = t (t (k t)) t
m = s i i
b = s (k s) k
c = s (s (k s) (s (k k) s)) (k k)
iC = (\a b c : s a (k c) b)
yi = (\i : b m (c b (i m)))
y = yi iC
triage = (\a b c : t (t a b) c)
pair = t
matchList = (\oe oc : triage oe _ oc)
lconcat = y (\self : matchList (\k : k) (\h r k : pair h (self r k)))
hmap = y (\self : matchList (\f : t) (\hd tl f : pair (f hd) (self tl f)))
map = (\f l : hmap l f)
lAnd = triage (\x : false) (\_ x : x) (\_ _ x : x)
lOr = triage (\x : x) (\_ _ : true) (\_ _ x : true)
equal = y (\self : triage (triage true (\z : false) (\y z : false)) (\ax : triage false (self ax) (\y z : false)) (\ax ay : triage false (\z : false) (\bx by : lAnd (self ax bx) (self ay by))))
x = map (\i : lconcat "Successfully concatenated " i) [("two strings!")]
equal x [("Successfully concatenated two strings!")]

1
test/string.tri Normal file
View File

@ -0,0 +1 @@
head (map (\i : lconcat "String " i) [("test!")])

View File

@ -1,7 +1,7 @@
cabal-version: 1.12 cabal-version: 1.12
name: sapling name: tricu
version: 0.4.0 version: 0.7.0
description: A micro-language for exploring Tree Calculus description: A micro-language for exploring Tree Calculus
author: James Eversole author: James Eversole
maintainer: james@eversole.co maintainer: james@eversole.co
@ -12,41 +12,45 @@ build-type: Simple
extra-source-files: extra-source-files:
README.md README.md
executable sapling executable tricu
main-is: Main.hs main-is: Main.hs
hs-source-dirs: hs-source-dirs:
src src
default-extensions: default-extensions:
ConstraintKinds DeriveDataTypeable
DataKinds LambdaCase
DeriveGeneric MultiWayIf
FlexibleContexts
FlexibleInstances
GeneralizedNewtypeDeriving
OverloadedStrings OverloadedStrings
ScopedTypeVariables
ghc-options: -threaded -rtsopts -with-rtsopts=-N -optl-pthread -fPIC ghc-options: -threaded -rtsopts -with-rtsopts=-N -optl-pthread -fPIC
build-depends: build-depends:
base >=4.7 base >=4.7
, cmdargs
, containers , containers
, haskeline , haskeline
, megaparsec , megaparsec
, mtl , mtl
, text
other-modules: other-modules:
Eval Eval
FileEval
Lexer Lexer
Library
Parser Parser
REPL REPL
Research Research
default-language: Haskell2010 default-language: Haskell2010
test-suite sapling-tests test-suite tricu-tests
type: exitcode-stdio-1.0 type: exitcode-stdio-1.0
main-is: Spec.hs main-is: Spec.hs
hs-source-dirs: test, src hs-source-dirs: test, src
default-extensions:
DeriveDataTypeable
LambdaCase
MultiWayIf
OverloadedStrings
build-depends: build-depends:
base base
, cmdargs
, containers , containers
, haskeline , haskeline
, megaparsec , megaparsec
@ -54,11 +58,12 @@ test-suite sapling-tests
, tasty , tasty
, tasty-hunit , tasty-hunit
, tasty-quickcheck , tasty-quickcheck
, text
default-language: Haskell2010 default-language: Haskell2010
other-modules: other-modules:
Eval Eval
FileEval
Lexer Lexer
Library
Parser Parser
REPL REPL
Research Research